
EASY-FIT: A Software System for Data Fitting in
Dynamical Systems

Prof. K. Schittkowski
Department of Mathematics
University of Bayreuth
95440 Bayreuth, Germany

July 6, 2000

Abstract

EASY-FIT is an interactive software system to identify parameters in explicit model
functions, steady-state systems, Laplace transformations, systems of ordinary differ-
ential equations, differential algebraic equations, or systems of one-dimensional time-
dependent partial differential equations with or without algebraic equations. Pro-
ceeding from given experimental data, i.e. observation times and measurements, the
minimum least squares distance of measured data from a fitting criterion is computed,
that depends on the solution of the dynamical system.

The software system is implemented in form of a Microsoft Access database running
under MS-Windows 95/98/NT. The underlying numerical algorithms are coded in For-
tran and are executable independently from the interface. Model functions are either
interpreted and evaluated symbolically by a Fortran-similar modeling language, that
allows in addition automatic differentiation of nonlinear functions, or by user-provided
Fortran subroutines.

Keywords: parameter estimation, data fitting, dynamical systems, ODE, DAE, PDE

1 Introduction

Data fitting plays an important role in many natural science, engineering and other dis-
ciplines. The key idea is to estimate unknown parameters in a mathematical model that
describes a real life situation, by minimizing the distance of some known experimental data
from the theoretically predicted model function values. Thus, also model parameters that
cannot be measured directly, can be identified by a least squares fit and analyzed subse-
quently in a quantitative way. To sum up, parameter estimation or data fitting, respectively,
is extremely important in all practical situations, where a mathematical model and corre-
sponding experimental data are available to describe the behaviour of a dynamical system.

1

The purpose of the paper is to introduce an interactive software system called EASY-FIT
that performs parameter estimation by a least squares fit. The mathematical model has to
belong to one of the following categories:

• explicit model functions
• dynamical systems of nonlinear equations (steady-state)
• Laplace transformations of differential equations
• ordinary differential equations with initial values
• differential algebraic equations
• one-dimensional, time-dependent partial differential equations
• one-dimensional partial differential algebraic equations
Model functions may depend also on an additional independent variable that could rep-

resent for example a concentration value of an experiment. Only for illustration purposes we
denote the first independent model variable the time variable of the system, the second one
the concentration variable and the dependent data as measurement values of an experiment.
This notation reflects the probably most typical applications. On the other hand, these
terms may have any other meaning within a model depending on the underlying application.
Nonlinear model functions are evaluated symbolically when implemented in the available

modeling language. Compilation and link of Fortran subroutines is not required whenever
model functions are defined or altered in this way. A particular advantage of the approach
is automatic differentiation of model functions to avoid numerical truncation errors. The
corresponding program is called PCOMP (Dobmann, Liepelt, Schittkowski, 1995), and is
part of the executable codes.
The development of EASY-FIT goes back to 1980, when the author performed a major

comparative performance evaluation of nonlinear programming codes (Schittkowski, 1980).
Convinced on the success of sequential quadratic programming algorithms, a Fortran code
called NLPQL was developed a bit later (Schittkowski, 1985/86). Main applications of
NLPQL are in structural mechanical engineering. Three years later the same code was the
basis for an extension, to solve also least squares, L1-, or min-max problems as efficiently
as special purpose programs (Schittkowski, 1988). Motivated by some cooperative research
projects with chemical and pharmaceutical firms, a first user interface of EASY-FIT was
developed in 1990, still under DOS. This very first attempt was implemented a few years
later in form of a MS-Access database with graphical user interface running under Windows.
By taking the feedback of users into account, the GUI was steadily improved and extended
until the present version. Parallel to the development of the user interface, also the numerical
routines were improved and extended constantly, for example by introducing additional
algebraic partial differential equations or hyperbolic transport equations, for which special
discretization procedures were needed.
The data fitting model, alternative phrases are parameter estimation or system identifi-

cation, is outlined in Section 2. Is is shown, how the dynamical systems have to be adapted
to fit into the least squares formulation required for starting an optimization algorithm.

2

A brief review of available numerical algorithms is presented in Section 3. Only some basic
features of the underlying ideas are presented. More details are found in the references. The
codes allow the numerical identification of parameters in any of the seven situations under
investigation. The executable files are called MODFIT.EXE and PDEFIT.EXE.
EASY-FIT is implemented in form a database for accessing model information, experi-

mental data, and results, whereas all numerical routines are written in Fortran. A context
sensitive help option is included containing additional technical and organizational infor-
mation e.g. about the input of data and optimization tolerances. The organization of the
software system and the menu-driven graphical user interface are outlined in Section 4.
EASY-FIT in permanent use to solve real life problem, i.e. problems with some realistic

practical background. Application areas are pharmacy, biochemistry, chemical engineering,
physics, and especially mechanical engineering, among others. A case study is presented
in Section 5, where a model for cooling a hot strip mill is to be identified. A few further
practical applications are listed in Section 6.

2 Parameter Estimation Models

EASY-FIT is an interactive software system to identify parameters in dynamical systems,
i.e. parameters that are hidden in additional time-dependent state equations that must be
solved implicitly. The basic mathematical structure is a least squares formulation of our
data fitting problem, i.e. minimization of a sum of squares of nonlinear functions of the form

min
∑l

r=1 fr(p)
2

gj(p) = 0 , j = 1, ...,me ,
p ∈ IRn : gj(p) ≥ 0 , j = me + 1, ...,m ,

pl ≤ p ≤ pu .

(1)

Here we assume that the parameter vector p is n-dimensional and that all nonlinear
functions are continuously differentiable with respect to p. Upper and lower bounds are
treated independently from the remaining constraints.
Our least squares parameter estimation algorithms proceed from the above formulation,

although in the one or other case different approaches are available to define the objective
functions. The assumption, that all problem functions must be smooth, is essential. The
efficient numerical algorithm under consideration are based more or less on the Gauss-Newton
method, that requires first derivatives. Alternatively the L2-norm may be changed to the
L1- or the L∞-norm.
To get a data fitting problem, we suppose that one vector-valued model function h(p, t, c)

is available, the so-called fitting criterion function, depending on the parameter vector p to
be identified, furthermore on an additional variable t called time, and optionally on another
one c called concentration. Both are also called the independent model variables, and h the
dependent one.
Now we proceed from nr sets of experimental measurements in the form

(ti, cj, y
k
ij) , i = 1, . . . , nt, j = 1, . . . , nc, k = 1, . . . , nr , (2)

3

where nt time values, nc concentration values and ntncnr corresponding experimental mea-
surement values are defined. Together with the vector-valued model function

h(p, t, c) = (h1(p, t, c), . . . , hr(p, t, c))
T ,

we get the above least squares formulation by defining

fr(p) = wk
ij(hk(p, ti, cj)− yk

ij) , (3)

where r runs from 1 to l = ntncnr in any order. Moreover we assume that there are suitable
weighting factors wk

ij > 0 given by the user, that are to reflect the individual influence of a
measurement for the whole experiment.
The underlying idea is to minimize the distance between the model function at certain

time and concentration points and the corresponding measurement values. This distance
is called the residual of the problem. In the ideal case the residuals are zero indicating a
perfect fit of model function by measurements.
If we assume that h(p, t, c) does not depend on the solution of additional state equa-

tions, we call it an explicit model function. Otherwise h(p, t, c) may depend in addition on
the solution vector of an auxiliary problem, e.g. an ordinary differential equation, that is
implicitly defined. Models of this kind are considered in the subsequent sections.

2.1 Steady-State Systems of Equations

In this case the model function h(p, t, c) depends in addition on the solution vector of a
system of nonlinear equations, i.e.

h(p, t, c) = h(p, z(p, t, c), t, c) , (4)

where z(p, t, c) ∈ IRs is implicitly defined by the solution z of the nonlinear system

G1(p, z, t, c) = 0 ,
· · ·

Gs(p, z, t, c) = 0 .
(5)

These systems of equations arise, for example, if the left-hand side of a differential equa-
tion żj = Gj(p, z, t, c) for j = 1, . . . , s is set to zero by assuming, that a steady-state is
reached. Usually the time variable t has another physical meaning in this case, e.g., a
temperature or a concentration, and c may be any other independent model variable.
The system functions are assumed to be continuously differentiable with respect to vari-

ables p and z. Moreover we require the regularity of the system, i.e. that the system is
solvable and that the derivative matrix(

∂Gi(p, z, t, c)

∂zj

)
i,j=1,...,s

has full rank for all p with pl ≤ p ≤ pu and for all z, for which a solution z(p, t, c) exists.
Consequently z(p, t, c) is differentiable with respect to all p in the feasible domain. The

4

Jacobian matrix of the solution z of the state equation w.r.t. the parameters to be estimated,
is easily obtained from (5) by solving the linear system

∇pG(p, z(p, t, c)) +∇zG(p, z(p, t, c))V = 0 , (6)

where V is a s× n-matrix.

2.2 Laplace Models

In many practical applications, the model is available in form of a Laplace formulation to
simplify the underlying analysis. The numerical algorithms described in this paper, are able
to proceed directly from the Laplace transform and to compute its inverse internally by a
quadrature formula.
The advantage of a Laplace formulation is that the numerical complexity of nonlinear sys-

tems can be reduced to a lower level. Linear differential equations, e.g., can be transformed
into algebraic equations, and linear partial differential equations with constant coefficients
can be reduced to ordinary differential equations. The simplified systems are often solvable
by analytical considerations.
If the model function is given in form of a Laplace transform, say H(p, s, c), the back-

transformation is performed numerically by a quadrature method (Stehfest, 1970), and
h(p, t, c) is the numerical inverse Laplace transform of H(p, s, c). We have to choose a
formula that allows the exact computation of the gradients of the fitting functions w.r.t. the
parameters to be estimated, if derivatives of the Laplace transform ∇pH(p, s, c) are known.

2.3 Systems of Ordinary Differential Equations

The fitting criterion or the dependent model variable depends now the solution y(p, t, c) of
a system of ordinary differential equations, i.e.

h(p, t, c) = h(p, y(p, t, c), t, c) , (7)

where y(p, t, c) denotes the solution of a system of s ordinary differential equations

ẏ1 = F1(p, y, t, c) , y1(0) = y0
1(p, c) ,

· · ·
ẏs = Fs(p, y, t, c) , ys(0) = y0

s(p, c) .
(8)

Without loss of generality we assume that the initial time is zero. The initial values
y0

1(p, c), . . ., y
0
s(p, c) may depend on one or more of the system parameters to be estimated,

and on the concentration parameter c. In this case, we have to assume in addition that the
observation times are strictly increasing.
There are many practical situations, where a model changes during integration over the

time, and where initial values are to be adopted. A typical example is a chemical reactor
model with non-continuous, time-dependent input functions. Thus, break or switching points
τi with 0 < τ1 < . . . < τnb

are allowed, where the initial values for each sub-interval are
given by any functions yi

j(p, c, y) depending on the parameters to be estimated, the actual

5

concentration value, and the solution of the previous interval at the break point τi. Internally
the integration of the differential equation is restarted at a break point. It is possible that
break points become variables to be adapted during the optimization process, if they are not
known in advance.
Constraints of the form (1) are permitted, where the restriction functions may depend

on the solution of the dynamical system at predetermined time and concentration values,
i.e.

gj(p) = gj(p, y(p, tj, cj), tj, cj) (9)

for j = 1, ...,m. The m predetermined time and, if available, concentration values must
coincide with some of the given measurement values. If not, the given data are rounded to
the nearest experimental value. If constraints are to be defined independently from given
measurement data, it is recommended to insert dummy experimental values with zero weights
at the desired time and concentration points tj and cj, respectively.

2.4 Systems of Differential Algebraic Equations

Parameter estimation problems based on differential algebraic equations, are very similar to
those based on ordinary differential equations. The only difference is that we allow additional
algebraic equations together with additional state variables.
Thus we have to replace (8) by the extended system

ẏ1 = F1(p, y, z, t, c) , y1(0) = y0
1(p, c) ,

· · ·
ẏs1 = Fs1(p, y, z, t, c) , ys1(0) = y0

s1
(p, c) ,

0 = G1(p, y, z, t, c) , z1(0) = z0
1(p, c) ,

· · ·
0 = Gs2(p, y, z, t, c) , zs2(0) = z0

s2
(p, c) .

(10)

Now y(p, t, c) and z(p, t, c) are solution vectors of a joint system of s1+s2 differential and
algebraic equations (DAE). The system is called an index-1-problem or an index-1-DAE, if
the algebraic equations can be solved w.r.t. z, i.e. if the matrix

∇zG(p, y, z, t, c) (11)

possesses full rank. In all other cases we get DAE’s with a higher index, see (Hairer, Wanner,
1991) for a suitable definition and more details.
Similar to systems of ordinary differential equations, it is possible to define switching or

break points, and to modify initial values at these points, that may depend on the parameters
to be estimated, the concentration variable and the solution w.r.t. the previous interval.
For simplicity we consider now only problems of index 1, although the numerical algo-

rithms are capable to treat also higher index models. Moreover problems with higher index
can be transformed to problems of index 1 by successive differentiation of the algebraic
equations.
We have to be very careful when defining the initial values of the model, since they must

satisfy the consistency equation

6

G1(p, y
0(p, c), z0(p, c), t, c) = 0 , . . . , Gs2(p, y

0(p, c), z0(p, c), t, c) = 0 . (12)

The initial values y0
1(p, c), . . . , y

0
s1
(p, c) and z0

1(p, c), . . . , z
0
s2
(p, c) are functions depending on

the parameters to be estimated, and the concentration variable.
Parameter estimation problems based on DAE models, can be solved by the program

MODFIT. The code checks, whether the consistency condition is satisfied or not when start-
ing an integration cycle. In the latter case, consistent initial values are computed by solving
the above nonlinear system of equations w.r.t. z after inserting initial values for the differ-
ential variables. Also if switching points exist, consistent initial values are evaluated before
restarting the integration procedure. As before, additional dynamical nonlinear equality and
inequality constraints can be taken into account.

2.5 Systems of One-Dimensional Time-Dependent Partial Differ-
ential Equations

Partial differential equation are extensions of ordinary differential equations, when an ad-
ditional space or spatial variable x is introduced together with corresponding first and op-
tionally also some higher order partial derivatives of the state variables. Again we assume
without loss of generality, that the initial time is zero. This assumption facilitates the de-
scription of the mathematical model and is easily satisfied in practice by a suitable linear
transformation of the time variable.
The model we want to investigate now, is defined by a system of np one-dimensional

partial differential equations in one or more spatial intervals (Schittkowski, 1997). These
intervals that could describe e.g. material areas with different diffusion coefficients, are given
by the outer boundary values xL and xR that define the total integration interval w.r.t. the
space variable x, and optionally some additional internal transition points xa

1, . . . , x
a
na−1.

Thus we get a sequence of na + 1 boundary and transition points

xa
0 := xL < xa

1 < . . . < xa
na−1 < xa

na
:= xR . (13)

For each integration interval, we define a one-dimensional, time-dependent partial differential
equation of the form

ui
t = F i(x, t, f i(x, t, v, ui, ui

x, p), f
i
x(x, t, v, u

i, ui
x, p), v, u

i, ui
x, u

i
xx, p) , (14)

where x ∈ IR is the spatial variable with xa
i−1 ≤ x ≤ xa

i for i = 1, . . . , na, t ∈ IR the time
variable with 0 < t ≤ T , v ∈ IRno the solution vector of the coupled system of ordinary
differential equations, ui ∈ IRnp the system variable we want to compute, and p ∈ IRn the
parameter vector to be identified by the data fitting algorithm. Note that we omit the second
independent model variable c for simplicity.
Optionally the right-hand side depends also on a so-called flux function f i(x, t, v, ui, ui

x, p),
which is introduced either to facilitate the declaration of the function side or for being able to
apply special discretization formulae in case of hyperbolic or related equations, when usual
approximation schemes break down, e.g. when shocks propagate through the integration
interval. In this case, the underlying system of equations is of the form

7

ui
t = f i

x(x, t, u
i, p) , i = 1, . . . na . (15)

For both end points xL and xR, we allow Dirichlet, Neumann, or mixed boundary con-
ditions. Transition conditions between different areas may be defined in a very similar way,
and depend on the solution values or their spatial derivatives of the left or right sub-interval
at the transition point, respectively. Note that boundary information is also contained in
coupled ordinary differential equations.
Since the starting time is assumed to be zero, initial conditions must have the form

ui(x, 0, p) = ui
0(x, p) , i = 1, . . . , na (16)

and are defined for all x ∈
[
xa

i−1, x
a
i

]
, i = 1, . . . , na.

If the partial differential equations are to be coupled to ordinary differential equations,
we proceed from an additional ODE-system of the form

v̇j = Gj(t, v, u
ij(xj, t, p), u

ij
x (xj, t, p), u

ij
xx(xj, t, p), p) (17)

for j = 1, . . . , no with initial values

v(0, p) = v0(p) , (18)

that may depend again on the parameters to be estimated. The system has no components,
i.e. v = (v1, . . . , vno)

T . Coupling of ordinary differential equations is allowed at arbitrary
points within the integration interval and the corresponding area is denoted by the index ij.
The spatial variable value xj belongs to the j-th area, i.e. xj ∈ [xa

ij−1, x
a
ij
) or xj ∈ [xa

na−1, x
a
na
],

respectively, j = 1, . . . , no, and is called coupling point.
Coupling points are rounded to their nearest line when discretizing the system. The right-

hand side of the ordinary differential equation may depend on the corresponding solution
of the partial equation and its first and second derivative w.r.t. the space variable at the
coupling point under consideration.
Similar to systems of ordinary differential equations, it is possible to define break or

switching points and modified initial values at these points, that may depend on the param-
eters to be estimated, the spatial variable and the solution w.r.t. the previous interval.
To indicate that the fitting criteria hk(p, t) depend also on the solution of the differential

equation at the corresponding fitting point, where k denotes the index of a measurement set,
we use the notation

hk(p, t) = hk(p, t, v(t, p), u
ik(xk, t, p), u

ik
x (xk, t, p), u

ik
xx(xk, t, p)) (19)

and insert hk instead of hk into the data fitting function. Again the fitting criteria may
depend on solution values at a given spatial variable value w.r.t. to an integration interval
defined by the index ik. The spatial variable xk belongs to the ik-th integration area, i.e.
xk ∈

[
xa

ik−1, x
a
ik

)
or xk ∈

[
xa

na−1, x
a
na

]
, respectively, k = 1, . . . , nr, where nr denotes the total

number of measurement sets. The fitting criterion may depend on the solution of the partial
equation and its first and second derivative w.r.t. the space variable at the fitting point.
Fitting points are rounded to their nearest line when discretizing the system.

8

As for ordinary differential equations, dynamical constraints are allowed, where the re-
striction functions may depend on the solution of the partial differential equation and its first
and second spatial derivatives at predetermined time and spatial values, and the solution of
the coupled ordinary differential equation at predetermined time values, i.e.

gj(p) = gj(xj, tj, p, v(tj, p), u
jk(xj, tj, p), u

jk
x (xj, tj, p), u

jk
xx(xj, tj, p)) (20)

for j = 1, ...,m. Here ujk denotes the corresponding integration area that contains the spatial
parameter xj. The m predetermined time values must coincide with some of the given mea-
surement values. If not, the given data are rounded to the nearest experimental data. The
corresponding spatial values must coincide with a line obtained by the equidistant discretiza-
tion of the underlying integration interval. If constraints are to be defined independently
from given measurement data, it is recommended to insert dummy experimental values with
zero weights at the desired time and space coordinates tj and xj, respectively.
In order to achieve smooth fitting criteria and constraints, we assume that all model

functions depend are continuously differentiable with respect to the parameter vector p.
Moreover we assume that the discretized system of differential equations is uniquely solvable
for all p with pl ≤ p ≤ pu. A collection of 20 examples of partial differential equations that
can be solved by the presented approach, and comparative numerical results are available
(Schittkowski, 1997), the demo version of EASY-FIT about 200 further PDE models.

2.6 Systems of One-Dimensional Partial Differential Algebraic
Equations

PDAE’s have the same model structure as one-dimensional, time-dependent partial differen-
tial equations. The only difference is that additional algebraic equations are permitted as in
case of DAE’s. Typical examples are higher order partial differential equations, for example

ut = f(x, t, u, uxxxx, p) ,

transformed into a second order equation by introducing additional variables

ut = f(x, t, u, wxx, p) ,

0 = w − uxx ,

or distributed systems of the form

u1
t = f1(x, t, u

1, u2, p) ,

u2
x = f2(x, t, u

1, u2, p) ,

with initial values u1(x, 0, p) = u1(x, p) , u
2(0, t, p) = u2(t, p), transformed into the PDAE

u1
t = f1(x, t, u

1, u2, p) ,

0 − u2
x − f2(x, t, u

1, u2, p)

or
u2

x = f2(x, t, u
1, u2, p) ,

0 − u1
x − f1(x, t, u

1, u2, p) ,

9

respectively.
Thus we proceed again from a sequence of na + 1 boundary and transition points

xa
0 := xL < xa

1 < . . . < xa
na−1 < xa

na
:= xR (21)

and consider the PDAE-system

ui
t = F i

1(x, t, f
i(x, t, v, ui, ui

x, p), f
i
x(x, t, v, u

i, ui
x, p), v, u

i, ui
x, u

i
xx, p) ,

0 = F i
2(x, t, f

i(x, t, v, ui, ui
x, p), f

i
x(x, t, v, u

i, ui
x, p), v, u

i, ui
x, u

i
xx, p) ,

(22)

i = 1, . . . na, where x ∈ IR is the spatial variable with xa
i−1 ≤ x ≤ xa

i for i = 1, . . . , na,
t ∈ IR the time variable with 0 < t ≤ T , v ∈ IRno the solution vector of the coupled system
of ordinary differential equations, ui ∈ IRnp the system variable we want to compute, and
p ∈ IRn the parameter vector to be identified by the data fitting algorithm.
But now, the state variables ui are divided into so-called differential variables and alge-

braic variables, i.e. ui = (ui
1, u

i
2)

T , where the number of algebraic variables is identical to the
number of algebraic equations summarized in the vector F2. Also we allow flux functions,
switching points, constraints for parameters and state functions, and coupled ordinary differ-
ential equations. All these extensions are treated in the same way as for partial differential
equations without algebraic equations.
However, we must handle initial and boundary conditions with more care. We have

to guarantee, that at least the boundary and transition conditions satisfy the algebraic
equations

0 = F i
2(x

a
i , t, f

i(xa
i , t, v, u

i, ui
x, p), f

i
x(x

a
i , t, v, u

i, ui
x, p), v, u

i, ui
x, u

i
xx, p) (23)

for i = 1, . . . na. If initial conditions for discretized algebraic equations are violated, then
the corresponding system of nonlinear equations is solved internally proceeding from initial
values given. In other words, consistent initial values are computed automatically, where the
given data serve as starting parameters for the nonlinear programming algorithm applied.
Thus, we allow only index-1-systems unless it is guaranteed, that consistent initial values

for the discretized DAE are available.

3 Numerical Algorithms

EASY-FIT is the graphical user interface for the parameter estimation programs MODFIT
and PDEFIT, that are also executable outside of EASY-FIT. One of its features is the
automatic generation of input files in ASCII format for the codes mentioned above. Model
functions are either defined symbolically to be executed by the automatic differentiation tool
PCOMP, or must be implemented within a Fortran subroutine. In this section we describe
very briefly the underlying numerical algorithms that are implemented.

3.1 Data Fitting Algorithms

The parameter estimation programs contain interfaces for four different least squares algo-
rithms, where only one code is also capable to solve L1- and L∞-problems, i.e. problems,

10

where the sum of absolute residual or the maximum of absolute residual values is to be
minimized.

DFNLP: By transforming the original problem into a general nonlinear programming prob-
lem in a special way, typical features of a Gauss-Newton and quasi-Newton least squares
method are retained (Schittkowski, 1988). In case of minimizing a sum of absolute func-
tion values or the maximum of absolute function values, the problem is transformed into a
smooth nonlinear programming problem by introducing additional variables and constraints.
In all three situations, the resulting optimization problem is solved by a standard sequential
quadratic programming code called NLPQL (Schittkowski, 1985).

DN2GB: The subroutine is a frequently used unconstrained least squares algorithm (Dennis,
Gay, Welsch, 1981). The mathematical method is also based on a combined Gauss-Newton
and quasi-Newton approach.

DSLMDF: First successive line searches are performed along the unit vectors by comparing
function values only. The one-dimensional minimization is based on a quadratic interpola-
tion. After a search cycle, the Gauss-Newton-type method DFNLP is executed with a given
number of iterations. If a solution is not obtained with sufficient accuracy, the search is
repeated (Nickel, 1995).

NELDER: This is a very simple search method (Nelder, Mead, 1965). Successively edges of
a simplex are exchanged by comparing function values only. The edge with highest function
value is replaced by another one generated by a move through the center of the actual simplex
to the other side.

Note that only DFNLP is able to take linear or nonlinear constraints into account. How-
ever, all other algorithms satisfy upper and lower bounds of the parameters to be estimated.
The algorithms are also capable to solve problems with large residuals. The choice of algo-
rithm NELDER is only useful when the other algorithms fail because of non-differentiable
model functions, a very bad starting point or large round-off errors in the function evaluation.

3.2 Solving Systems of Dynamical Equations

The program MODFIT is executed to solve parameter estimation problems based with
steady-state equations. To solve systems of nonlinear equations, they are treated as con-
straints of a general nonlinear programming problem and solved by the Fortran code NLPQL
(Schittkowski, 1985). The algorithm proceeds from a successive quadratic approximation
of the Lagrangian function and linearization of constraints. To get a search direction, a
quadratic programming problem must be solved in each iteration step, a subsequent line
search stabilizes the algorithm. Thus, the algorithm behaves like Newton’s method for solv-
ing a system of equations.
Also initial values required for starting an optimization cycle, must be predetermined by

the user in a suitable way. They may depend on the parameters of the outer optimization
problem. The system of nonlinear equations must be solved for each experimental time value.
Moreover, the gradients of the model function h(p, z(p, t, c), t, c) are calculated analytically
by the implicit function theorem. In this case, a system of linear equations must be solved
for each time value by numerically stable Householder transformations.

11

3.3 Numerical Laplace-Back-Transformation

MODFIT allows to solve parameter estimation problems, where the model functions are
defined in the Laplace space. In this case, constraints are not allowed.
If an analytical back-transformation is not available, we have to apply a numerical quadra-

ture formula (Bellman, 1966). In our case we use a simple formula (Stehfest, 1970) with
the particular advantage, that derivatives w.r.t. the parameters to be estimated, are easily
obtained from the derivatives of the Laplace function.

3.4 Numerical Algorithms for Ordinary Differential Equations

Differential equations must be formulated explicitly, and are solved by a couple of integration
routines. For implicit methods, derivatives of the right-hand side of the differential equa-
tion are evaluated analytically using either user-provided derivatives or internal automatic
differentiation. Within MODFIT it is possible to select among seven different solvers:

DOPRI5 : Explicit Runge-Kutta method of order 4/5 (Dormand, Prince,
1981) as implemented by Hairer, Nørsett, and Wanner (Hairer,
Nørsett, Wanner, 1993). Step-length is adapted internally.

DOP853 : Explicit Runge-Kutta method of order 8 based on Dormand and
Prince formula (Dormand, Prince, 1981), see (Hairer, Nørsett,
Wanner, 1993). Local error estimation and step size control is based
on embedded formulae of order 5 and 3.

ODEX : Extrapolation method based on GBS algorithm with variable order
and step-size (Hairer, Nørsett, Wanner, 1993).

RADAU5 : Implicit Radau-type Runge-Kutta method of order 5 for stiff equa-
tions (Hairer, Wanner, 1991).

SDIRK4 : Diagonally implicit Runge-Kutta method with 5 stages (Hairer,
Wanner, 1991).

SEULEX : Extrapolation algorithm based on linearly implicit Euler method
(Hairer, Wanner, 1991).

IND-DIR : Runge-Kutta-Fehlberg method of order 4 to 5 (Shampine, Watts,
1979) with additional sensitivity analysis implemented (Benecke,
1993).

Note that the first six codes use dense output, i.e. the integration is performed over
the whole interval given by first and last time value, and intermediate solution values are
interpolated. In these cases gradients w.r.t. parameters to be estimated, are obtained by
external numerical differentiation. Codes RADAU5, SDIRK4 and SEULEX are able to solve
also stiff equations.
The last algorithm IND-DIR is capable to evaluate derivatives of the solution of the

ODE internally w.r.t. the parameters to be estimated, where derivatives of the Runge-Kutta
scheme are used.

12

3.5 Numerical Algorithms for Differential Algebraic Equations

Algebraic differential equations are solved by the implicit solvers RADAU5, SDIRK4, or
SEULEX, see above. DAE’s with an index greater than 1 can be solved only by RADAU5.
If consistent initial values cannot be provided by the user, the corresponding nonlinear system
of equations is treated as general nonlinear programming problem with equality constraints.
A minimum norm solution is computed by the sequential quadratic programming method
NLPQL (Schittkowski, 1985). The initial values given for the algebraic equations are used
as starting values for NLPQL.

3.6 Numerical Algorithms for Partial Differential Equations

The underlying idea is, to transform the partial differential into a system of ordinary dif-
ferential equations by discretizing the model functions w.r.t. the spatial variable x. This
approach is known as the method of lines (Schiesser, 1991).
For the i-th integration interval of the spatial variable, we denote the number of dis-

cretization points by ni, i = 1, . . . , na. We proceed from uniform grid points within each
interval and get a discretization of the whole space interval from xL to xR. To approximate
the first and second partial derivatives of u(x, t, p) w.r.t. the spatial variable at a given point
x, several different alternatives have been implemented in PDEFIT (Schittkowski, 1999):
a) Polynomial approximation: We compute an interpolating polynomial subject to some
neighboring values. The number of interpolation points depends on the polynomial degree
selected. Polynomials of order 3, 5, 7 or 9 are computed by Newton’s formula. By differ-
entiating the interpolation formulae, first and second order approximations are obtained.
In case of Neumann boundary conditions, Hermite interpolation is used for being able to
exploit known derivative values.
b) Difference Formulae: First and second derivatives can be approximated by difference
formulae (Schiesser, 1991). Difference formulae with 3 and 5 points for first derivatives are
available, that can be applied recursively to get also the second derivatives. Alternatively
a 5-point difference formula for second derivatives is implemented as well. The difference
formulae are adapted at the boundary to accept given function and gradient values.
c) Upwind Formulae for Hyperbolic Equations: In case of a scalar hyperbolic equation

ui
t = f i

x(x, t, u
i, p) (24)

with a so-called flux function f , approximation by polynomials or difference formulae might
become unstable, especially if non-continuous boundary conditions are supplied to describe
for example the propagation of shocks (Schiesser, 1991). Eight upwind formulae are available
for solving hyperbolic equations, in particular TVD and high resolution schemes. For more
information, see the original literature (Yee, 1985), (Chakravarthy, Osher, 1984a, 1984b,
1985), (Sweby, 1984), (Wang, Richards, 1991), and (Yang, Przekwas, 1992). TVD stands
for Total Variation Diminishing and the corresponding one parameter family of upwind
formulae was proposed by (Chakravarthy, Osher, 1984a). In this case a certain stability
criterion requires that the internal time stepsizes of the ODE-solver do not become too small
compared to the spatial discretization accuracy. Because of the black box approach used,

13

the stepsizes however cannot be modified and we have to suppose that the criterion remains
satisfied.
d) Systems of Advection-Diffusion Equations: Systems of non-homogeneous, nonlinear
advection equations

ui
t = f i

x(u
i, p)x + gi(x, t, ui, ui

x, u
i
xx, p) (25)

with area index i, i = 1, . . . , na and ui ∈ IRnp , np ≥ 1, can be solved by essentially non-
oscillatory (ENO) schemes (Harten e. al, 1987), (Harten, 1989), (Walsteijn, 1993). High
order polynomials are applied to approximate a primitive function, which is supposed to
represent the flux function at intermediate spatial grid points. The choice of the correspond-
ing stencil depends on the magnitude of divided differences, to direct the stencil away from
discontinuities. To solve also systems of hyperbolic equations, a full eigenvalue-eigenvector
decomposition of the Jacobian of the flux function w.r.t. ui is performed, and the scalar ENO
method is applied to coefficient functions after a suitable transformation. The resulting sys-
tem of ordinary differential equations can be solved either by implicit ODE solvers as before,
or by a special Runge-Kutta method with fixed stepsizes to satisfy the CLF condition.
Whenever a boundary or transition condition is given in Dirichlet-form, then we know the

value of the boundary function and use it to interpolate or approximate the function u(x, t, p)
as described above. In other words, the corresponding function value in the right-hand side of
the discretized system is replaced by the value given. Alternatively a boundary condition may
appear in Neumann-form. In this case, the derivative values at the boundary are replaced
by the given ones before evaluating the second order spatial derivative approximations.
Ordinary differential equations are added to the discretized system without any further

modification. Since arbitrary coupling points are allowed, they are rounded to the nearest
line of the discretized system. In the same way fitting criteria can be defined at arbitrary
values of the spatial variable.

3.7 Numerical Algorithms for Partial Differential Algebraic Equa-
tions

The basic idea is now, to transform the partial differential into a system of differential al-
gebraic equations by discretizing the model functions w.r.t. the spatial variable x. It is
assumed that always the last nae equations of the np given ones are algebraic. Again we
proceed from uniform grid points within each interval and get a discretization of the whole
space interval from xL to xR. To approximate the first and second partial derivatives of
u(x, t, p) w.r.t. the spatial variable at a given point x, we may apply polynomial approxi-
mation or difference formulae as outlined in the previous section. Thus we get a system of
differential algebraic equations, that can be solved then by any of the available integration
routines.
Boundary conditions have to satisfy the algebraic equations. Consistent initial values are

computed within the code PDEFIT, where the given data serve as starting parameters for
the nonlinear programming algorithm applied. Consequently, we allow only index-1-systems
unless it is guaranteed, that consistent initial values for the discretized DAE are available.
Also any jumps or discontinuities at initial values of algebraic equations do not make any

14

sense.

3.8 Statistical Error Analysis

Proceeding from the assumption that the model is sufficiently linear in a neighborhood of
an optimal solution and that all experimental data are Gaussian and independent, some
statistical data can be evaluated:

• Variance/covariance matrix of the problem data
• Correlation matrix of the problem data
• Estimated variance of residuals
• Confidence intervals for the individual parameters subject to the significance levels 1%,
5% or 10%, respectively.

4 Software Organisation and User Interface

EASY-FIT consists of a database containing models, data and results, and of underlying
numerical algorithms for solving the parameter estimation problem depending on the mathe-
matical structure, i.e.

MODFIT parameter estimation in explicit functions, Laplace transforms, steady-
state systems, ordinary differential and differential algebraic equations

PDEFIT parameter estimation in one-dimensional, time-dependent partial differ-
ential algebraic equations

EASY-FIT requires a lot of system resources to run in a smooth and efficient way. Recom-
mended hardware are at least 32 MB memory and a fast processor with 400 MHz or more.
A full installation requires about 45 MB on hard disk. The system runs under Windows 95,
Windows 98, and Windows NT.
EASY-FIT comes with the run-time and royalty-free version of MS-Access. Plots are

generated either by internal plot facilities or optionally by the external graphic systems
MS-Graph5 or GNUPLOT1. All numerical data describing problems and models are kept
in a separate database with file name EASY DAT.MDB to allow easier maintenance and
updates.
Parameter estimation problems are solvable without a Fortran compiler, if the model

functions are defined in form of the PCOMP modeling language. In this case nonlinear model
functions are interpreted and evaluated during run time together with their derivatives.
EASY-FIT allows also the most flexible input of the underlying model in form of Fortran
code, and has interfaces for the Watcom F77/3862, the Salford FTN773, the Lahey F77L-
EM/32, the Digital Visual Fortran, and the Microsoft Fortran PowerStation4 compiler, where
the compiler and linker options can be altered and adapted to special needs.

1 c©1986-93 by T. Williams, C. Kollin
2WATCOM is a registered trademark of WATCOM Systems Inc.
3FTN77 is a trademark of Salford Software Ltd.
4PowerStation is a trademark of Microsoft Corporation

15

To install EASY-FIT, one has to insert the CD-ROM and to execute the setup program
SETUP.EXE. Installation assumes that the run-time version of MS-Access is to be loaded
together with EASY-FIT. More than 550 test examples a included, from which a suitable
reference model can be selected. A complete list is found in the EASY-FIT documentation,
which comes either in printed form (about 320 pages) or in form of a PDF file..
EASY-FIT is delivered with Fortran source codes of MODFIT.FOR and PDEFIT.FOR,

and of corresponding interfaces to the PCOMP interpreter (MODFITEX.FOR and PDE-
FITEX.FOR). It is possible to link numerical algorithms with user-provided dimensioning
parameters or to solve problems, where model functions are defined in form of a Fortran
code. All additional object codes of internal numerical algorithms, e.g. for solving the opti-
mization problem or for integrating differential equations, are copied to a separate directory
by the setup program, as required by the user.
The graphical user interface of EASY-FIT is menu-driven, where numerical data are

inserted into input masks or tables, respectively, and alternative options selected by pull-
down lists or select buttons. The available commands allow to define or alter data and
functions, to start an optimization run or to get reports on numerical results.

1. File Command

By selecting either a name from the pick-list or by typing the key word, an available
problem in the database is loaded. The pick-list can be sorted with respect to name,
date, model type, or title either in ascending or descending order, to facilitate the
access to problem data. New problems can be generated by the second option of
the File command. Another option of the File command is to export or import a
problem to or from text files in a format specified by EASY-FIT. Possible reasons for
exporting data are e.g. the execution of the numerical codes outside of the database
or the possibility to copy problem data to another system. Experimental data can be
read from any ASCII-file either in formatted or unformatted form. Moreover, the File
command contains a couple of record operations to move through the database, e.g.
to go to the first, previous, next or last record. A record corresponds to one parameter
estimation problem. Finally the File command allows to define a filter for selecting a
subset of parameter estimation problems from the database.

2. Edit Command

All data that define the dynamical model, can be changed subsequently by moving to
the corresponding input field directly or by activating a corresponding sub-form. Model
functions are inserted or modified by the internal standard editor of EASY-FIT. The
PCOMP parser can be started immediately from the editor form. If Fortran code is
preferred, compilation and link is possible directly from the editor form. The order by
which variables and functions are to be inserted, is predetermined by the underlying
model structure.

3. Start Command

Depending on the mathematical model type, EASY-FIT executes either MODFIT or
PDEFIT, respectively. The codes perform a simulation at a given parameter set or
start an optimization cycle. EASY-FIT generates a suitable input file with all data

16

and tolerances in a format required by the numerical algorithm. After termination, the
results are stored in the database. If numerical results are available from a previous
run, the user is asked whether he would like to perform a restart, i.e. a simulation or
optimization run starting from known parameters.

4. Report Command

The Report command serves to get either a text report or a function and data plot.
The text report is generated directly from the database, and summarizes numerical
data and results. Moreover, model functions together with the experimental data,
individual residuals, and state variables of partial differential equations are plotted, in
the latter case in form of interactive 3D-plots. Alternatively, plots can be generated
for MS Graph5 or GNUPLOT.

5. Print Command

Reports and plots generated by the Report command on screen, are sent to the line
printer directly.

6. Copy Command

All problem data including the model function file, can be copied to another one either
within the actual database or to an external EASY-FIT database. In the latter case
the database must exist and must possess the same structure as EASY-FIT. Another
option of the command is to insert a problem from an external database directly to the
actual one. A particular advantage is a more convenient update, if a new EASY-FIT
version is to be installed.

7. Delete Command

The actual problem is deleted from the database. Alternatively a search mask may
be defined by the user, to delete a complete subset of parameter estimation problems
from the database.

8. Make Command

If model functions are implemented in form of a Fortran subroutine, the command
allows to compile and link the code. The corresponding compiler and linker calls are
adapted by the Utilities command.

9. Utilities Command

Through a couple of menu items EASY-FIT can be adapted to individual situations.
The following sub-commands are available:

(a) Compiler Options: A DOS-batch file with name COMPILE.BAT must contain all
necessary compiler options. Some default execution commands for the compilers
are included, for which object codes are supplied.

(b) Linker Options: Similar to the compiler, also all linker options can be adapted
and reset by a user.

17

(c) Dimensioning Parameters: Dimensioning parameters of the codes PDEFIT and
MODFIT can be adapted by editing the corresponding include file. The meaning
of the parameters is documented by initial comments.

(d) Update Database: After terminating a simulation or optimization run, the nu-
merical results are read from external files only if the actual record is changed or
if some other commands are initiated. Alternatively is is possible to require an
immediate update of the database.

(e) System Configuration: A few default directory names for exporting or importing
files are set, an alternative Windows editor can be selected, the desired graphics
software is chosen, and the available Fortran compiler is defined, if needed at all.

(f) Generating Simulated Measurements: Proceeding from a previous simulation run,
it is possible to insert the simulation results into the table containing the exper-
imental data. Subsequently the given parameter values can be disturbed and a
data fitting run can be started to check the validity of the model, for example
whether parameters can be identified uniquely or not.

(g) Adding Randomly Generated Errors to Measurements: In some cases it might
be desirable to add some randomly generated errors to the actual measurements,
e.g. if exact data of a test example from literature are available and if one wants
to add some noise.

Corresponding screen plots are shown in the subsequent section in form of a case study.

5 Case Study: Cooling in a Hot Strip Mill

We consider a mathematical model for cooling a thin plate of thickness L in a rolling mill by
water at one side, and by surrounding air at the other side. For simplicity, only one cooling
section is considered and we suppose, that the temperature can be measured at both sides
of the plate. Moreover, we assume constant speed and neglect heat transfer orthogonal to
the move direction. Then we can apply the standard one-dimensional heat equation

Cp(T (z, t))p(T (z, t))
∂T (z, t)

∂t
=

∂

∂z

(
λ(T (z, t))

∂T (z, t)

∂z

)
, (26)

where T (z, t) denotes the temperature at time t and the spatial position z orthogonal to the
surface of the plate. The density p(T) is given by

p(T) = k0
p + kpT ,

the heat transfer coefficient λ(T) by

λ(T) = k0
λ + kλT ,

and the specific heat capacity Cp(T) by piecewise linear interpolation (Groch, 1990), (Kopp,
Philipp, 1992), (Chen, 1991), (Ihme, Flaxa, 1991).

18

Neumann boundary conditions are obtained by combining Newton and Stefan-Boltzmann
laws

λ(T (0, t))∂T (0,t)
∂z

= α(T (0, t)− Ta) + ε(T (0, t))C(T 4(0, t)− T 4
a) ,

−λ(T (L, t))∂T (L,t)
∂z

= α(T (L, t)− Ta) + ε(T (L, t))C(T 4(L, t)− T 4
a) ,

(27)

where C denotes the Stefan-Boltzmann constant, i.e. C = 5.57 · 10−8, and ε(T) the emission
degree

ε(T) = T (kεT + k0
ε) + k1

ε ,

(Seredynski, 1973). The boundary conditions are formulated for air cooling at both sides
with temperature Ta = Tair = 50. One side of the plate (z = 0) is cooled by water with
Ta = Twat = 20 in the time interval from tw1 = 5 to tw2 = 20. Initial temperature is set
to T (z, 0) = T0 = 900. Note that temperature is given in Celsius, but all other values are
normalized.
The partial differential equation is discretized at 50 equidistant spatial intervals and

the time integration is performed with RADAU5 (Hairer, Wanner, 1991) with termination
accuracy 10−4. The integration is restarted at the two switching points tw1 = 4 and t

w
2 = 20,

and gradients are approximated by forward differences.
We want to investigate the question, whether the corresponding heat transfer constants

α = αwat and α = αair can be identified by numerical simulation. Thus we select arbitrary
values αwat = 300, αair = 60 and generate measurements by simulation at 40 equidistant
time values ti = i, i = 1, . . . 40 and the two boundary values z = 0 and z = L = 10. Then
we apply the least squares code DFNLP (Schittkowski, 1988) starting from αwat = 500,
αair = 50, to identify these values. The residual is reduced from 0.11 · 105 to 0.32 · 10−10 in
14 iterations, where αwat and αair are identified subject to 8 correct digits. When adding a
randomly generated error of 1% to the simulated data, we obtain the subsequent parameter
values listed together with 1% confidence regions:

αwat 283.4 303.9 324.3
αair 51.5 57.1 62.7

The exact parameter values are within the predicted tolerances.
Within EASY-FIT, model equation (26) is defined by the lines

* FUNCTION flux

lambda = K0lam + Klam*T

flux = lambda*T_z

C

* FUNCTION T_t

P = K0p + Kp*T

T_t = f_z/(Cp(T)*P)

whereas the more complex boundary conditions are given in the form

* FUNCTION T_z_left

lambda = K0lam + Klam*T

if ((time.gt.tw1).and.(time.le.tw2)) then

19

alpha = alpha_wat

T_a = T_wat

else

alpha = alpha_air

T_a = T_air

endif

eps = T*(K0eps + Keps*T) + K1eps

T_z_left = (alpha*(T - T_a) + eps*C*((T+273.15)**4

/ - (T_a+273.15)**4))/lambda

C

* FUNCTION T_z_right

lambda = K0lam + Klam*T

alpha = alpha_air

T_a = T_air

eps = T*(K0eps + Keps*T) + K1eps

T_z_right = -(alpha*(T - T_a) + eps*C*((T+273.15)**4

/ - (T_a+273.15)**4))/lambda

EASY-FIT proceeds from the order of the function declaration blocks to assign state
equations, boundary and initial values, etc. The remaining parameters are either constants,
state variables, or the parameter to be fitted. There are no special conventions for variable
names, and the linear interpolation of Cp(T) is defined by

* LININT Cp

0.0 0.68

780.0 1.1

790.0 2.8

840.0 0.72

880.0 0.7

920.0 0.6

1400.0 0.73

The remaining constants not defined so far, are set to

* REAL CONSTANT

Klam = 10

K0lam = 1.5E+4

Kp = -0.33

K0p = 7.85E+3

Keps = 0.125E-6

K0eps = -0.38E-3

K1eps = 1.1

The interactive implementation of the model and the identification of unknown parame-
ters is summarized by five steps:

Step 1: Create a new problem in the database, insert some information strings and in
particular experimental data, see Figure 1.

20

Step 2: Choose type of dynamical model (ODE, PDE, ...), define model structure, and set
discretization parameters, see Figure 2.

Step 3: Implement model equations and check correct syntax, see Figure 3.

Step 4: Define parameters to be estimated, select least squares solver, set termination
tolerances, and start data fitting run, see Figure 4.

Step 5: Check report, especially parameter values, residuals, and state variable, see Figure 5.

Whenever necessary, model equations, data, or tolerances are refined and a data fitting
run is repeated, until parameters are identified up to desired precision.

Figure 1: Exponential Data

6 Applications

The demo and the full version of EASY-FIT contain more than 550 real life and academic
data fitting problems, distributed as follows:

21

Figure 2: Model Structure and Discretization

explicit model functions : 69
Laplace transforms : 8
steady state equations : 28
ordinary differential equations : 228
differential algebraic equations : 22
partial differential equations : 178
partial differential algebraic equations : 19
sum : 552

Most test problems are found in the literature, but there are about 150 test problems
derived from cooperative projects with firms or academic institutions applying EASY-FIT.
For about 220 test problems there exist experimental data for which an exact solution is not
known in advance. The remaining data sets are simulated subject to randomly generated
errors. A few practical applications for which published results are available, are listed:

1. Substrate diffusion in a metabolically active cutaneous tissue (Schittkowski, 1998a),
(Boderke, Schittkowski, Wolf, Merkle, 1998), (Steingässer, 1994), also formulated as
an optimal control model (Blatt, Schittkowski, 1998).

2. Simulation of an acetylene reactor (Wansbrough, 1985), optimal control with online
adoption of maintenance intervals (Birk, Liepelt, Schittkowski, Vogel, 1998).

3. Drying of maltodextrin a convection oven (Frias, Oliveira, Schittkowski, 1998).

22

Figure 3: Dynamical Equations

4. Receptor-ligand binding study (Rominger, Albert, 1985), (Schittkowski, 1994).

5. Multibody system of a truck (Simeon, Grupp, Führer, Rentrop, 1994), (Simeon, Ren-
trop, 1993), (Führer, Leimkuhler, 1991).

6. Manutec r3 robot (Otter, Türk, 1988).

7. Mass transfer in sorbing porous media (Hoch, 1995), (Van Genuchten, Wierenga, 1976),
(Andersson, Olsson, 1985).

8. Ammonium and nitrate fertilization in forest soils (Fischer, 1996).

9. Distillation column (Jourdan, 1997), (Kuhn, Schmidt, 1987).

10. Cooling during rolling-mill operations (Hedrich, 1996), (Groch, 1990).

11. Signal evaluation in periodic mechanical systems (Zschieschang, Rockhausen, 1996).

12. Isomerization in protein unfolding and refolding (Odefey, Mayr, Schmid, 1995), (Mayr,
Odefey, Schutkowski, Schmid, 1996).

13. Themodynamic coupling for GroEL-mediated unfolding (Walter, Lorimer, Schmid,
1996).

Moreover EASY-FIT is running at a couple of academic and commercial institutions, for
example at BASF, Bayer, Boehringer Ingelheim, Eurocopter, Novartis.

23

Figure 4: Starting Data Fitting

7 Summary

We introduced a software system to estimate unknown parameters in explicit model func-
tions, steady-state systems, Laplace transformations, systems of ordinary differential equa-
tions, differential algebraic equations, or systems of one-dimensional time-dependent partial
differential equations with or without algebraic equations. Proceeding from given experi-
mental data, i.e. observation times and measurements, the minimum least squares distance
of measured data from a fitting criterion is computed, that depends on the solution of the
dynamical system.
The general structure of the mathematical models that can be treated, is described in

detail together with a brief review on discretization techniques and numerical algorithms.
The graphical user interface is outlined and illustrated in form of a case study, showing also
the numerical efficiency of the approach.
There are a couple of possible enhancements of the software in future, we are considering

at present, for example

1. optimal experimental design, e.g. position of experimental time values,

2. analytical or semi-analytical derivatives of PDE solutions,

3. understanding higher index equations in PDAE’s,

4. implicit differential equations,

24

Figure 5: Interpretation of Results

5. more flexible interactive plots,

6. interfaces to office programs (Excel, Word).

For more information about EASY-FIT and its capabilities, contact the author under

klaus.schittkowski@uni-bayreuth.de

A demo version is available through the URL

http://www.klaus-schittkowski.de

References

[1] Andersson F., Olsson B. eds. (1985): Lake G̊adsjön. An acid forest lake and
its catchment, Ecological Bulletins, Vol. 37, Stockholm

[2] Ascher U.M., Petzold L.R. (1998): Computer Methods for Ordinary Differen-
tial Equations and Differential-Algebraic Equations, SIAM, Philadelphia

[3] Bellman R.E., Kalaba R.E., Lockett J. (1966): Numerical Inversion of the
Laplace Transform, American Elsevier, New York

25

[4] Benecke C. (1993): Interne numerische Differentiation von gewöhnlichen Dif-
ferentialgleichungen, Diploma Thesis, Department of Mathematics, University
of Bayreuth

[5] Birk J., Liepelt M., Schittkowski K., Vogel F. (1998): Computation of optimal
feed rates and operation intervals for turbular reactors, Journal of Process
Control, Vol. 9, pp. 325-336

[6] Blatt M., Schittkowski K. (1998): Optimal Control of One-Dimensional Par-
tial Differential Equations Applied to Transdermal Diffusion of Substrates,
in: Optimization Techniques and Applications, L. Caccetta, K.L. Teo, P.F.
Siew, Y.H. Leung, L.S. Jennings, V. Rehbock eds., School of Mathematics
and Statistics, Curtin University of Technology, Perth, Australia, Volume 1,
pp. 81-93

[7] Bock H.G. (1983): Recent advantages in parameter identification techniques
for ODE, Proceedings of the International Workshop on Numerical Treatment
of Inverse Problems in Differential and Integral Equations, Birkhäuser, pp. 95-
121

[8] Boderke P., Schittkowski K., Wolf M., Merkle H.P. (1998): A mathematical
model for diffusion and concurrent metabolism in metabolically active tissue,
submitted for publication

[9] Chakravarthy S.R., Osher S.(1984): High resolution schemes and the entropy
condition, SIAM Journal on Numerical Analysis, Vol. 21, No. 5, pp. 955-984

[10] Chakravarthy S.R., Osher S. (1984): Very high order accurate TVD schemes,
ICASE Report No. 84-44

[11] Chakravarthy S.R., Osher S. (1985): Computing with high resolution upwind
schemes for hyperbolic equations, Lectures in Applied Mathematics, Vol. 22,
pp. 57-86

[12] Chen J. (1991): Abkühlungsvorgänge von Stahlplatten mit Spritzwasserbeauf-
schlagung, Umformtechnische Schriften, Vol. 30

[13] Dennis J.E.jr., Gay D.M., Welsch R.E. (1981): Algorithm 573: NL2SOL-An
adaptive nonlinear least-squares algorithm, ACM Transactions on Mathema-
tical Software, Vol. 7, No. 3, pp. 369-383

[14] Dobmann M., Liepelt M., Schittkowski K. (1995): Algorithm 746: PCOMP: A
FORTRAN code for automatic differentiation, ACM Transactions on Mathe-
matical Software, Vol. 21, No. 3, pp. 233-266

[15] Fischer P. (1996): Modellierung und Simulation der Ammonium- und Nitrat-
Dynamik in strukturierten Waldböden unter besonderer Berücksichtigung
eines dynamischen, hierarchischen Wurzelsystems, Diploma Thesis, Depart-
ment of Mathematics, University of Bayreuth

26

[16] Frias J.M., Oliveira J.C, Schittkowski K. (1998): Modelling of maltodextrin
DE12 drying process in a convection oven, submitted for publication

[17] Führer C., Leimkuhler B. (1991): Numerical solution of differential-algebraic
equations for constrained mechanical motion, Numerische Mathematik, Vol.
59, pp. 55-69

[18] Groch A.G. (1990): Autmatic control of laminar flow cooling in continuous
and reversing hot strip mills, Iron and Steel Engineer, pp. 16-20

[19] Hairer E., Wanner G. (1991): Solving Ordinary Differential Equations II. Stiff
and Differential-Algebraic Problems, Springer Series Computational Mathe-
matics, Vol. 14, Springer

[20] Hairer E., Nørsett S.P., Wanner G. (1993): Solving Ordinary Differential
Equations I: Nonstiff Problems, Springer Series Computational Mathematics,
Vol. 8, Springer

[21] Harten A., Engquist B., Osher S., Chakravarthy S.R. (1987): Uniformly high
order accurate essentially non-oscillatory schemes, III, Journal on Computa-
tional Physics, Vol. 71, pp. 231-303

[22] Harten A. (1989): ENO schemes with subcell resolution, Journal on Compu-
tational Physics, Vol. 83, pp. 148-184

[23] Hartwanger C., Schittkowski K. (1999): Computer aided design of horn ra-
diators for satellite communication by least squares optimization, to appear:
Engineering Optimization

[24] Hedrich C. (1996): Modellierung, Simulation und Parameterschätzung von
Kühlprozessen in Walzstraßen, Diploma Thesis, Department of Mathematics,
University of Bayreuth

[25] Hoch R. (1995): Modellierung von Fließwegen und Verweilzeiten in einem
Einzugsgebiet unter stationären Fließbedingungen, Diplomarbeit, Fakultät für
Biologie, Chemie und Geowissenschaften, Universität Bayreuth

[26] Ihme F., Flaxa V. (1991): Intensivkühlung von Fein- und Mittelstahl, Stahl
und Eisen, Vol. 112, pp. 75-81

[27] Jourdan, M. (1997): Simulation und Parameteridentifikation von Destilla-
tionskolonnen, Diploma Thesis, Department of Mathematics, University of
Bayreuth

[28] Kopp R., Philipp F.D. (1992): Physical parameters and boundary conditions
for the numerical simulation of hot forming processes, Steel Research, Vol. 63,
pp. 392-398

27

[29] Kuhn U., Schmidt G. (1987): Fresh look into the design and computation of
optimal output feedback controls for linear multivariable systems, International
Journal on Control, Vol. 46, No. 1, pp. 75-95

[30] Mayr L.M., Odefey C., Schutkowski M., Schmid F.X. (1996): Kinetic analysis
of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-
mixing technique, Biochemistry, Vol. 35, No. 17, pp. 5550-5561

[31] Nelder J.A., Mead R. (1965): A simplex method for function minimization,
The Computer Journal, Vol. 7, p. 308

[32] Nickel B. (1995): Parameterschätzung basierend auf der Levenberg-Marquardt-
Methode in Kombination mit direkter Suche, Diploma Thesis, Department of
Mathematics, University of Bayreuth

[33] Odefey C., Mayr L.M., Schmid F.X. (1995): Non-prolyl cis-trans peptide bond
isomerization as a rate-determining step in protein unfolding and refolding,
Journal of Molecular Biology, Vol. 245, pp. 69-78

[34] Otter M., Türk S. (1988): The DFVLR models 1 and 2 of the Manutec r3
robot, DFVLR-Mitt. 88-3, DFVLR, Oberpfaffenhofen

[35] Prince P.J., Dormand J.R. (1981): High order embedded Runge-Kutta formu-
lae, Journal on Computational Applied Mathematics, Vol. 7, pp. 67-75

[36] Rominger K.L., Albert H.J. (1985): Radioimmunological determination of
Fenoterol. Part I: Theoretical fundamentals, Arzneimittel-Forschung/Drug
Research, Vol.35, No.1a, pp. 415-420

[37] Schiesser W.E. (1991): The Numerical Method of Lines, Academic Press, San
Diego

[38] Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 183 Springer

[39] Schittkowski K. (1985/86): NLPQL: A FORTRAN subroutine solving con-
strained nonlinear programming problems, Annals of Operations Research,
Vol. 5, pp. 485-500

[40] Schittkowski K. (1988): Solving nonlinear least squares problems by a general
purpose SQP-method, in: Trends in Mathematical Optimization, K.-H. Hoff-
mann, J.-B. Hiriart-Urruty, C. Lemarechal, J. Zowe eds., International Series
of Numerical Mathematics, Vol. 84, Birkhäuser, pp. 295-309

[41] Schittkowski K. (1994): Parameter estimation in systems of nonlinear equa-
tions, Numerische Mathematik, Vol. 68, pp. 129-142

[42] Schittkowski K. (1997): Parameter estimation in partial differential equations,
Optimization Methods and Software, Vol. 7, No. 3-4, pp. 165-210

28

[43] Schittkowski K. (1998): Parameter estimation in a mathematical model for
substrate diffusion in a metabolically active cutaneous tissue, to appear:
Progress in Optimization II, pp. 183-204

[44] Schittkowski K. (1999): PDEFIT: A FORTRAN code for parameter estima-
tion in partial differential equations, Optimization Methods and Software, Vol.
10, pp. 539-582

[45] Seredynski F. (1973): Prediction of plate cooling during rolling mill operation,
Journal of the Iron and Steel Institute, Vol. 211, pp. 197-203

[46] Shampine L.F., Watts H.A. (1979): The art of writing a Runge-Kutta code,
Applied Mathematics and Computations, Vol. 5, pp. 93-121

[47] Simeon B., Rentrop P. (1993): An extended descriptor form for the simulation
of constrained mechanical systems, in: Advanced Multibody System Dynamics,
W. Schiehlen ed., Kluwer Academic Publishers, pp. 469-474

[48] Simeon B., Grupp F., Führer C., Rentrop P. (1994): A nonlinear truck model
and its treatment as a multibody system, Journal of Computational and Ap-
plied Mathematics, Vol. 50, pp. 523-532

[49] Stehfest H. (1970): Algorithm 368: Numerical inversion of Laplace trans-
forms, Communications of the ACM, Vol. 13, pp. 47-49

[50] Steingässer I. (1994): The organized HaCaT cell culture sheet: A model ap-
proach to study epidermal peptide drug metabolism, Dissertation, Pharmaceu-
tical Institute, ETH Zürich

[51] Sweby P.K. (1984): High resolution schemes using flux limiters for hyperbolic
conservation laws, SIAM Journal on Numerical Analysis, Vol. 21, No. 5, pp.
995-1011

[52] Van Genuchten M.T., Wierenga P.J. (1976): Mass transfer studies in sorbing
porous media. 1. Analytical solutions, Soil Sci. Soc. Am. Journal, Vol. 44, pp.
892-898

[53] Walsteijn F.H. (1993): Essentially non-oscillatory (ENO) schemes , in: Nu-
merical Methods for Advection-Diffusion Problems, C.B. Vreugdenhil, B. Ko-
ren eds., Notes on Fluid Mechanics, Vol. 45, Vieweg, Braunschweig

[54] Walter S., Lorimer G.H., Schmid F.X. (1996): A thermodynamic coupling
mechanism for GroEl-mediated unfolding, Biochemistry, Vol. 93, pp. 9425-
9430

[55] Wang Z., Richards B.E. (1991): High resolution schemes for steady flow com-
putation, Journal of Computational Physics, Vol. 97, pp. 53-72

[56] Wansbrough R.W. (1985):Modeling chemical reactors, Chemical Engineering,
Vol. 5, pp. 95-102

29

[57] Yang H.Q., Przekwas A.J. (1992): A comparative study of advanced shock-
capturing schemes applied to Burgers’ equation, Journal of Computational
Physics, Vol. 102, pp. 139-159

[58] Yee H.C. (1985): Construction of a class of symmetric TVD schemes, Lectures
in Applied Mathematics, Vol. 22, pp. 381-395

[59] Zschieschang T., Rockhausen L. (1996): Zur Signalauswertung und Model-
lierung bei periodischen Vorgängen mit transienten Anteilen, Report, Institute
of Mechanics, Technical University of Chemnitz-Zwickau, Chemnitz, Germany

30

