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Abstract

The Fortran subroutine DFNLP solves constrained nonlinear programming

problems, where the objective function is of the form

- sum of squares of function values,

- sum of absolute function values,

- maximum of absolute function values,

- maximum of functions.
It is assumed that all individual problem functions are continuously differen-
tiable. By introducing additional variables and constraints, the problem is
transformed into a general smooth nonlinear program which is then solved
by the SQP code NLPQLP, see Schittkowski [33], the most recent implemen-
tation with non-monotone line search (Dai, Schittkowski [3]). For the least
squares formulation, it can be shown that typical features of special purpose
algorithms are retained, i.e., a combination of a Gauss-Newton and a quasi-
Newton search direction. In this case, the additionally introduced variables
are eliminated in the quadratic programming subproblem, so that calculation
time is not increased significantly. Some comparative numerical results are
included, the usage of the code is documented, and an illustrative example is
presented.

Keywords: data fitting, constrained nonlinear least squares, min-max optimization,
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1 Introduction

Nonlinear least squares optimization is extremely important in many practical situa-
tions. Typical applications are maximum likelihood estimation, nonlinear regression,
data fitting, system identification, or parameter estimation, respectively. In these
cases, a mathematical model is available in form of one or several equations, and the
goal is to estimate some unknown parameters of the model. Exploited are available
experimental data, to minimize the distance of the model function, in most cases
evaluated at certain time values, from measured data at the same time values. An
extensive discussion of data fitting especially in case of dynamical systems is given
by Schittkowski [31].
The mathematical problem we want to solve, is given in the form

min 330, fi(x)?
gi(x)=0, 7=1,...,m, ,

z € IR": /(@) . (1)
gi(x) >0, j=me+1,....m ,

r<z<ux, .

It is assumed that fi, ..., f; and ¢, ..., g, are continuously differentiable.

Although many nonlinear least squares programs were developed in the past, see
Hiebert [14] for an overview and numerical comparison, the author knows of only
very few programs that were written for the nonlinearly constrained case, e.g., the
code NLSNIP of Lindstrom [18]. However, the implementation of one of these or
any similar special purpose code requires a large amount additional efforts subject
to manpower and numerical experience.

In this paper, we consider the question how an existing nonlinear programming
code can be used to solve constrained nonlinear least squares problems in an efficient
and robust way. We will see that a simple transformation of the model under
consideration and subsequent solution by a sequential quadratic programming (SQP)
algorithm retains typical features of special purpose methods, i.e., the combination
of a Gaufl-Newton search direction with a quasi-Newton correction. Numerical test
results indicate that the proposed approach is as efficient as the usage of special
purpose methods, although the required programming effort is negligible provided
that an SQP code is available.

The following section describes some basic features of least squares optimization,
especially some properties of Gauss-Newton and related methods. The transforma-
tion of a least squares problem into a special nonlinear program is described in
Section 3. We will discuss how some basic features of special purpose algorithms
are retained. The same ideas are extended to the constrained case in Section 4.
Alternativ norms are investigating in Section 5, i.e., the L., and the L; norm. We
show that also in these cases, that simple transformations into smooth nonlinear
programs are possible. In Section 6, we summarize some comparative numerical



results on a large set of test problems. Section 7 contains a complete documentation
of the Fortran code and two examples.

DFNLP is applied in chemical engineering, pharmaceutics, mechanical engi-
neering, and in natural sciences like biology, geology, ecology. Customers include
ACA, BASF, Battery Design, Bayer, Boehringer Ingelheim, Dow Chemical, GLM
Lasertechnik, Envirogain, Epcos, Eurocopter, Institutt for Energiteknikk, Novartis,
Oxeno, Prema, Prodisc, Springborn Laboratories, and dozens of academic research
institutions worldwide.

2 Least Squares Methods

First, we consider problems with respect to the Ls-norm, also called least squares
problems, where we omit constraints and bounds to simplify the notation,

min 30, fi(z)?
r e R" .

(2)

These problems possess a long history in mathematical programming and are ex-
tremely important in practice, particularly in nonlinear data fitting or maximum
likelihood estimation. In consequence, a large number of mathematical algorithms

is available for solving (2). To understand their basic features, we introduce the
notation F'(z) = (fi(z),..., filz))" and let

1 l
f(z) = 52 fi(x)?
i=1
Then
Vf(z) = VF(z)F () (3)
defines the Jacobian of the objective function with VF(x) = (Vfi(z),..., Vfi(x)).
If we assume now that all functions fi, ..., f; are twice continuously differentiable,
we get the Hessian matrix of f by
V%f(x) = VF(2)VF(x)" + B(z) , (4)
where
Z fi(x)V2 fi(z) . (5)

Proceeding from a given iterate 3, Newton’s method can be applied to (2) to
get a search direction dj € IR™ by solving the linear system

V2 f(ax)d + V f(x) = 0
or, alternatively,

VE(2)VF(z)'d + B(x)d + VF(zp)F(x) =0 . (6)



Assume that
F(a) = (fi(2"), ..., filz")" =0

at an optimal solution x*. A possible situation is a perfect fit where model function
values coincide with experimental data. Because of B(z*) = 0, we neglect matrix
B(zy) in (6) for the moment, see also (5). Then (6) defines the so-called normal
equations of the linear least squares problem

min ||VEF(z)Td + F(x)||

de IR" . @)
A new iterate is obtained by x,,1 = xp + apdy, where di is a solution of (7) and
where a denotes a suitable steplength parameter. It is obvious that a quadratic
convergence rate is achieved when starting sufficiently close to an optimal solution.
The above calculation of a search direction is known as the Gauss-Newton method
and represents the traditional way to solve nonlinear least squares problems, see
Bjorck [2] for more details. In general, the Gauss-Newton method possesses the
attractive feature that it converges quadratically although we only provide first
order information.

However, the assumptions of the convergence theorem of Gauss-Newton methods
are very strong and cannot be satisfied in real situations. We have to expect difficul-
ties in case of non-zero residuals, rank-deficient Jacobian matrices, non-continuous
derivatives, and starting points far away from a solution. Further difficulties arise
when trying to solve large residual problems, where F(2*)" F(z2*) is not sufficiently
small, for example relative to ||[VF(2*)|. Numerous proposals have been made in
the past to deal with this situation, and it is outside the scope of this section to give
a review of all possible attempts developed in the last 30 years. Only a few remarks
are presented to illustrate basic features of the main approaches, for further reviews
see Gill, Murray and Wright [10], Ramsin and Wedin [26], or Dennis [5].

A very popular method is known under the name Levenberg-Marquardt algo-
rithm, see Levenberg [16] and Marquardt [20]. The key idea is to replace the Hessian
in (6) by a multiple of the identity matrix, say A\xI, with a suitable positive factor
Ai. We get a uniquely solvable system of linear equations of the form

For the choice of A; and the relationship to so-called trust region methods, see
Moré [21].

A more sophisticated idea is to replace B(py) in (6) by a quasi-Newton-matrix By,
see Dennis [1]. But some additional safeguards are necessary to deal with indefinite
matrices VF(x;)VF(x;,)T + By in order to get a descent direction. A modified
algorithm is proposed by Gill and Murray [9], where By, is either a second-order
approximation of B(zy), or a quasi-Newton matrix. In this case, a diagonal matrix
is added to VF(xy,)VF (23)" + By, to obtain a positive definite matrix. Lindstrom [17]



proposes a combination of a Gauss-Newton and a Newton method by using a certain
subspace minimization technique.

If, however, the residuals are too large, there is no possibility to exploit the
special structure and a general unconstrained minimization algorithm, for example
a quasi-Newton method, can be applied as well.

3 The SQP-Gauss-Newton Method

Many efficient special purpose computer programs are available to solve uncon-
strained nonlinear least squares problems. On the other hand, there exists a very
simple approach to combine the valuable properties of Gauss-Newton methods with
that of SQP algorithms in a straightforward way with almost no additional efforts.
We proceed from an unconstrained least squares problem in the form

min % Yi1 filx)?
r e R"

see also (2). Since most nonlinear least squares problems are ill-conditioned, it is
not recommended to solve (8) directly by a general nonlinear programming method.
But we will see in this section that a simple transformation of the original problem
and its subsequent solution by an SQP method retains typical features of a spe-
cial purpose code and prevents the need to take care of negative eigenvalues of an
approximated Hessian matrix as in the case of alternative approaches. The corre-
sponding computer program can be implemented in a few lines provided that a SQP
algorithm is available.

The transformation, also described in Schittkowski [30, 31], consists of introduc-

(8)

ing [ additional variables z = (z1,..., %)’ and [ additional equality constraints of
the form
file) =2z=0, i=1,...,1 . (9)
Then the equivalent transformed problem is
. min %ZTZ
(z,2) € R**": (10)
F(z)—2z=0,
F(z) = (fi(x), ..., filx))T. We consider now (10) as a general nonlinear program-

ming problem of the form
~ min f(7)
TelR": (11)
g9(z) =0
with n =n+1, = (z,2), f(z,2) = 1272, g(z,2) = F(z) — z, and apply an SQP
algorithm, see Spellucci [35], Stoer [36], or Schittkowski [28, 31]. The quadratic
programming subproblem is of the form

de R": e
Vg(zp) d+g(zx) =0 .

(12)



Here, Ty, = (xy, 2x) is a given iterate and

> Bk : Ck

with B, € IR"*", C}, € IR™, and D, € IR"¥!, a given approximation of the Hessian
of the Lagrangian function L(Z,u) defined by

L(z,u) = f(z)—u"g(z)
= %sz —ul'(F(x) — 2)
Since
_ v [ =VF(2)u
V:L(Z,u) = ( o )
nd 9 ([ B(z,u) : 0
ViL(z,u) = < 0 L )
with

B(z,u) = — ; u; V2 fi(x) (14)

it seems to be reasonable to proceed now from a quasi-Newton matrix given by

B0 19

where By € IR™" is a suitable positive definite approximation of B(xy,u). Inser-
tion of this By into (12) leads to the equivalent quadratic programming subproblem

min $d” Byd + 3e’e + zle

(d,e) € R™:
VF(x)'d—e+ F(xg) — 2 =0,

(16)

where we replaced d by (d,e). Some simple calculations show that the solution of
the above quadratic programming problem is identified by the linear system

VF(z3)VF(2)'d 4 Bpd + VF(x,)F(x;) =0 . (17)

This equation is identical to (6), if By = B(xy), and we obtain a Newton direction
for solving the unconstrained least squares problem (8).

Note that B(z) defined by (5) and B(z) defined by (14) coincide at an optimal
solution of the least squares problem, since F(zy) = —u,. Based on the above
considerations, an SQP method can be applied to solve (10) directly. The quasi-
Newton-matrices B}, are always positive definite, and consequently also the matrix
By, defined by (13). Therefore, we omit numerical difficulties imposed by negative
eigenvalues as found in the usual approaches for solving least squares problems.



When starting the SQP method, one could proceed from a user-provided initial
guess x( for the variables and define

% = Flw), »
w- (1), 18

guaranteeing a feasible starting point Zy. The choice of By is of the form (15) and
allows a user to provide some information on the estimated size of the residuals,
if available. If it is known that the final norm F(z*)TF(z*) is close to zero at
the optimal solution x*, the user could choose a small p in (18). At least in the
first iterates, the search directions are more similar to a Gauss-Newton direction.
Otherwise, a user could define 4 = 1, if a large residual is expected.

Under the assumption that By is decomposed in the form (15) and that By
be updated by the BFGS formula, then By, is decomposed in the form (15), see
Schittkowski [30]. The decomposition (15) is rarely satisfied in practice, but seems
to be reasonable, since the intention is to find a x* € IR" with

VF@*)F(r*) =0 |

and VF(x;,)Tdy + F(xy) is a Taylor approximation of F(zy,1). Note also that the
usual way to derive Newton’s method is to assume that the optimality condition is
satisfied for a certain linearization of a given iterate xp, and to use this linearized
system for obtaining a new iterate.

Example 3.1 We consider the banana function
fzy, ) = 100(zy — 212)* + (1 — 21)? .

When applying the nonlinear programming code NLPQLP of Schittkowski [28, 53],
an implementation of a general purpose SQP method, we get the iterates of Table 1
when starting at vo = (—1.2,1.0)T. The objective function is scaled by 0.5 to adjust
this factor in the least squares formulation (1). The last column contains an internal
stopping condition based on the optimality criterion, in our unconstrained case equal
to

IV f (20) By 'V f ()|

with a quasi-Newton matrix B,. We observe a very fast final convergence speed, but
a relatively large number of iterations.

The transformation discussed above, leads to the equivalent constrained nonlinear
programming problem

min 2% + 292
) 2 _
T1,T2, 21,22 0 10(z0 —21°) — 21 =0,

1-1[’1—22:0 .



Now NLPQLP computes the results of Table 2, where the second column shows in
addition the maximal constraint violation. Obuviously, the convergence speed is much
faster despite of the inaccurate gradient evaluation by forward differences.

ko flaze)  s(xp) ko f(xx) s(@)
0 12.10 0.39-10* 33 0.42-1072 0.54-1072
1 2153 0.75-10° 34 0.16-1072 0.18-1072
2 1925 0.26-10° 35 0.58-107% 0.69-1073
3 1805 0.98-107! 36 0.11-107* 0.18-1073
4 1.711 0.42-10° 37 0.97-107° 0.19-1074
5 1562 0.39-10° 38 0.19-107% 0.39-1076
39 0.58-107? 0.13-10°8
Table 1: NLP Formulation of Banana Function
k f(zx) r(zy) s(xy)
0 12.10 0.0 24.8
1 0.96-10~" 48.3 0.23-1076
2 0.81-10~" 0.13-10°6 0.16-1071

Table 2: Least Squares Formulation of Banana Function

4 Constrained Least Squares Problems

Now we consider constrained nonlinear least squares problems
min 13 fi(2)?
2 i=1J1

(x)=0, 7=1,...,m, ,
x € R": (@) / (19)
gi(x) >0, j=me+1,....m ,

r<xr<ux, .

A combination of the SQP method with the Gauss-Newton method is proposed by
Mahdavi-Amiri [19]. Lindstrom [18] developed a similar method based on an active
set idea leading to a sequence of equality constrained linear least squares problems.
A least squares code for linearly constrained problems was published by Hanson and
Krogh [13] that is based on a tensor model.

On the other hand, a couple of SQP codes are available for solving general smooth
nonlinear programming problems, for example VFO2AD (Powell [23]), NLPQLP
(Schittkowski [28, 33]), NPSOL (Gill, Murray, Saunders, Wright [11]), or DONLP2



(Spellucci [35]). Since most nonlinear least squares problems are ill-conditioned,
it is not recommended to solve (19) directly by a general nonlinear programming
method as shown in the previous section. The same transformation used before can
be extended to solve also constrained problems. The subsequent solution by an SQP
method retains typical features of a special purpose code and is implemented easily.

As outlined in the previous section, we introduce [ additional variables z =

(21,...,2)T and [ additional nonlinear equality constraints of the form
1 =1, ..., 1. The following transformed problem is to be solved by an SQP method,
min 1272
fi(l')—ZiZO, Z:L,l s
(z,2) € R™™: gj(z)=0, j=1,...,m, , (20)

gi(x) >0, j=me+1,....m

n<zxz<ux, .
In this case, the quadratic programming subproblem has the form

min 1(d,e)"Bi(d,e) + zfe
Vii(z)Td—e+ filry) —2F =0, i=1,...,0 ,

(d,e) € R™: Vgj(zp)Td+gj(zx) =0, j=1,...,m,. , (21)
Vgi(xp)Td+ gj(xk) >0, j=me+1,...,m ,

T —rp S d ST, — T
It is possible to simplify the problem by substituting
e=VF(x)'d+ F(zy) — 2z

so that the quadratic programming subproblem depends on only n variables and
m linear constraints. This is an important observation from the numerical point of
view, since the computational effort to solve (21) reduces from the order of (n +1)?
to n3, and the remaining computations in the outer SQP frame are on the order of
(n +1)2. Therefore, the computational work involved in the proposed least squares
algorithm is comparable to the numerical efforts required by special purpose meth-
ods, at least if the number [ of observations is not too large.

When implementing the above proposal, one has to be aware that the quadratic
programming subproblem is sometimes expanded by an additional variable §, so
that some safeguards are required. Except for this limitation, the proposed trans-
formation (20) is independent from the variant of the SQP method used, so that
available codes can be used in the form of a black boz.



In principle, one could use the starting points proposed by (18). Numerical
experience suggests, however, starting from zo = F'(zo) only if the constraints are
satisfied at xg,

gi(zg) = 0, j=1,....m. ,
gj(zg) > 0, j=me+1,....m .

In all other cases, it is proposed to proceed from z; = 0.

A final remark concerns the theoretical convergence of the algorithm. Since the
original problem is transformed into a general nonlinear programming problem, we
can apply all convergence results known for SQP methods. If an augmented La-
grangian function is preferred for the merit function, a global convergence theorem
is found in Schittkowski [27]. The theorem states that when starting from an arbi-
trary initial value, a Kuhn-Tucker point is approximated, i.e., a point satisfying the
necessary optimality conditions. If, on the other hand, an iterate is sufficiently close
to an optimal solution and if the steplength is 1, then the convergence speed of the
algorithm is superlinear, see Powell [21] for example. This remark explains the fast
final convergence rate one observes in practice.

The assumptions and are required by any special purpose algorithm in one or
another form. But in our case, we do not need any regularity conditions for the
function fi, ..., fi, i.e., an assumption that the matrix VF(zy) is of full rank, to
adapt the mentioned convergence results to the least squares case. The reason is
found in the special form of the quadratic programming subproblem (21), since the
first [ constraints are linearly independent and are also independent of the remaining
restrictions.

5 Alternative Norms

Except for of estimating parameters in the Ly-norm by minimizing the sum of squares
of residuals, it is sometimes desirable to change the norm, for example to reduce
the maximum distance of the model function from experimental data as much as
possible. Thus, we consider a possibility to minimize the sum of absolute values or
the maximum of absolute values as two additional alternative formulations. In both
cases, we get non-differentiable objective functions preventing the direct usage of
any of the algorithms mentioned in previous sections.

To overcome the difficulty, we transform the given problem into a smooth non-
linear programming problem that is solved then by any standard technique, for
instance an available SQP algorithm. In the first case, the original problem is given
in the form

min S, |fi)
gi(x)=0, 7=1,...,m, ,

re R": /(@) . (22)
gj(x)zoajzme+17“‘7m7

r<z<ux, .

10



By introducing now [ additional variables z;, 72 = 1, .. ., [, and 2/ additional inequality
constraints, we get an equivalent smooth problem of the form

xr € IR",
2z € R

gi(x) >0, j=me+1,....m ,

min Y1, 2

gj(.T):O, jzla"'amea

(23)
zz—fz(x)ZO, izl,...,l,

zz—l—fz(x)ZO, ’L.Zl,...,l,

rn<z<ux, .

From a solution of the extended problem, we get easily a solution of the original
one and vice versa. The transformed problem is differentiable, if we assume that
the model functions f;(x), i =1, ..., [, and the constraints g;(z), j =1, ..., m, are

continuously differentiable.

In a similar way, we transform a maximum-norm problem

r e R":

min max;—,_; |fi(x)]

gi(x)=0, j=1,....,m. ,

into an equivalent smooth nonlinear programming problem

xr € IR™,
z€e IR

(24)
gi(x) >0, j=me+1,....m ,
IZSIqu
min z
gj(.T):O, jzla"'amea
gi(x) >0, j=me+1,...,m
g )

z—filx) >0, i=1,...,1,
24 filx) >0, i=1,...,1 ,

xleSl‘u

by introducing now only one additional variable.

Example 5.1 To test also a parameter estimation erample, we consider a data
fitting problem defined by the model function

h(z,t) =

.1'1(t2 + .Tgt)
- t2 + ZE3t —f- Ty ’

= (x1,...,24)". There are two additional equality constraints

h(z,t1) =1 =0, h(z,tin) —yn =0 .

11



The starting point is xo = (0.25,0.39,0.415,0.39)7. We apply the code DFNLP with
Ly, Lo, and Lo, norm and get the results of Table 3. Termination accuracy is set
to 1077 according to the accuracy by which gradients are approzimated. Here, f(x*)
denotes the final objective function value, r(x*) the sum of constraint violations,
s(x*) the termination criterion, and n, the number of gradient evaluations until
convergence. In this case, we get three different solutions as must be expected.

norm  f(x*) a3} x5 x5 x} r(z*) s(z*) ng
Ly 0.082 0.184 1.120 0.754 0.538 0.80-10719 0.28-10"" 11
L, 0.016 0.192 0.404 0.275 0.267 0.67-107° 0.35-1077 9
L, 0.021 0.192 0.362 0.231 0.189 0.35-107? 0.12-1077 7

Table 3: Results of DENLP for Different Norms

A valuable side-effect is the possibility, to apply the last transformation also to
min-max problems of the form

remRr: T (26)

into an equivalent smooth nonlinear program
min 2
gi(x)=0, j=1,....me ,

D gi(x) >0, j=me.+1,....m , (27)
z—filx) >0, i=1,...,1,

xr € IR™,
z € IR

v <x <2y

by introducing now one additional variable and [ additional inequality constraints.
In contrast to (26), problem (27) is now a smooth nonlinear optimization problem
assuming that all model functions are smooth.

12



6 Performance Evaluation

Since the proposed transformation does not depend on constraints, we consider now
the unconstrained least squares problem

min 1 370, f;(x)?

rn<z<ux, .

r e IR": (28)
We assume that all functions f;(z), i = 1, ..., [, are continuously differentiable.
Efficient and reliable least squares algorithms were implemented mainly in the 1960s
and 1970s, see for example Fraley [8] for a review. An early comparative study of
13 codes was published by Bard [I]. In most cases, mathematical algorithms are
based on the Gauss-Newton method, see Section 2. When developing and testing
new implementations, the authors used standard test problems, which have been
collected from literature and which do not possess a data fitting structure in most
cases, see Dennis et al. [0], Hock and Schittkowski [15], or Schittkowski [29].

Our intention is to present a comparative study of some least squares codes, when
applied to a set of data fitting problems. Test examples are given in form of analytical
functions to avoid additional side effects introduced by round-off or integration errors
as, e.g., in the case of dynamical systems. We proceed from a subset of the parameter
estimation problems listed in Schittkowski [31], a set of 143 least squares functions.
More details, in particular the corresponding model functions, data, and results,
are found in the database of the software system EASY-FIT [31, 32], which can be
downloaded from the home page of the author'. Derivatives are evaluated by the
automatic differentiation tool PCOMP, see Dobmann et al. [7]. The following least
squares routines are executed to solve the test problems mentioned before:

DFNLP: By transforming the original problem into a general nonlinear program-
ming problem in a special way, typical features of a Gauss-Newton and quasi-Newton
least squares method are retained, as outlined in the previous sections. The result-
ing optimization problem is solved by a standard sequential quadratic programming

code called NLPQLP, see Schittkowski [28, 33].

NLSNIP: The code is a special purpose implementation for solving constrained
nonlinear least squares problems by a combination of Gauss-Newton, Newton, and
quasi-Newton techniques, see Lindstrom [17, 18].

DIN2GB: The subroutine is a frequently used unconstrained least squares algo-
rithm developed by Dennis et al. [6]. The mathematical method is also based on a
combined Gauss-Newton and quasi-Newton approach.

DSLMDEF': First, successive line searches are performed along the unit vectors by
comparing function values only. The one-dimensional minimization uses succes-
sive quadratic interpolation. After a search cycle, the Gauss-Newton-type method
DFNLP is executed with a given number of iterations. If a solution is not obtained

Thttp://www.klaus-schittkowski.de/
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with sufficient accuracy, the direct search along axes is repeated, see Nickel [22] for
details.

All algorithms are capable of taking upper and lower bounds of the variables into
account, but only DFNLP and NLSNIP are able to solve also constrained problems.

The optimization routines are executed with the same set of input parameters,
although we know that in one or another case, these tolerances can be adapted to
a special situation leading to better individual results. Termination tolerance for
DFNLP is 1071°. DN2GB is executed with tolerances 1072 and 10~7 for the relative
function and variable convergence. NLSNIP uses a tolerance of 1071° for the relative
termination criteria and 10~® for the absolute stopping condition. The total number
of iterations is bounded by 1,000 for all three algorithms. The code DSLMDF is not
allowed to perform more than 100 outer iteration cycles with a termination accuracy
of 1072 for the local search step performed by DFNLP. The search algorithm needs
at most 50 function evaluations for each line search with reduction factor of 2.0 and
an initial steplength of 0.1.

In some situations, an algorithm is unable to stop at the same optimal solution
obtained by the other ones. There are many possible reasons, for example termina-
tion at a local solution, internal instabilities, or round-off errors. Thus, we need a
decision when an optimization run is considered to be a successful one or not. We
claim that successful termination is obtained if the total residual norm differs at
most by 1 % from the best value obtained by all four algorithms, or, in case of a
problem with zero residuals, is less than 10~7. The percentage of successful runs is
listed in Table 4, where the corresponding column is denoted by succ.

Comparative performance data are evaluated only for those test problems which
are successfully solved by all four algorithms, altogether 95 problems. The corre-
sponding mean values for number of function and gradient evaluations are denoted
by ny and n, and are also shown in Table 4.

Although the number of test examples is too low to obtain statistically relevant
results, we get the impression that the codes DN2GB and NLSNIP behave best
with respect to efficiency. DFNLP and DN2GB are somewhat more reliable than
the others subject to convergence towards a global solution. The combined method
DSLMDF needs more function evaluations because of the successive line search
steps. However, none of the four codes tested is able to solve all problems within
the required accuracy.

14



7

code suce ny Ng

DFNLP 94.4 % 30.2 19.6
NLSNIP 87.4 % 26.5 17.0
DN2GB 93.0 % 27.1 19.2
DSLMDF 77.6 % 290.9 16.6

Table 4: Performance Results for Explicit Test Problems

Program Documentation

DFNLP is implemented in form of a Fortran subroutine. Model functions and
gradients are called by subroutine calls or, alternatively, by reverse communication.
In the latter case, the user has to provide functions and gradients in the same
program which executes DFNLP, according to the following rules:

1.

Choose starting values for the variables to be optimized, and store them in
the first column of X.

Compute objective and all constraint function values, store them in RES and
G, respectively.

. Compute gradients of objective function and all constraints, and store them

in DRES and DG, respectively. The J-th row of DG contains the gradient of
the J-th constraint, J=1,...,M.

Set IFAIL=0 and execute DFNLP.

. If DENLP returns with IFAIL=-1, compute objective function and constraint

values subject to variable values found in X, store them in RES and G, and
call DFNLP again.

. If DENLP terminates with IFAIL=-2, compute gradient values with respect to

the variables stored in X, and store them in DRES and DG. Only derivatives
for active constraints, ACTIVE(J)=.TRUE., need to be computed. Then call
DFNLP again.

If DFNLP terminates with IFAIL=0, the internal stopping criteria are satis-
fied. In case of IFAIL>0, an error occurred.

Note that RES, G, DRES, and DG contain the transformed data and must be
set according to the specific model variant chosen. If analytical derivatives are not
available, simultaneous function calls can be used for gradient approximations, for
example by forward differences, two-sided differences, or even higher order formulae.
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Usage:

CALL DFNLP(MODEL,M,ME,LMMAX,L,N.LNMAX,LMNN2,LN,X,F,
/ RES,G,DRES,DG,U,XL,XU,ACC,ACCQP,RESSIZ, MAXFUN,
/ MAXIT,MAX_NM,TOL_NM,IPRINT,MODE, IOUT,IFATL,
/ WA, LWA, KWA , LKWA, ACTIVE,LACTIV,QPSOLVE)

Definition of the parameters:

MODEL :  Optimization model, i.e.,
1- Ly norm, i.e., min ', |fi(z)],

2 - Ly norm, i.e., min %Eézl fi(x)?,

3 - Ly norm, i.e., min max;—,__; |fi(z),

4 - min-max problem, i.e., min max;—; __; fi(x).
M : Number of constraints.
ME : Number of equality constraints.

LMMAX : Row dimension of array DG for Jacobian of constraints. LM-
MAX must be at least one and greater or equal to
M+ L+ L, if MODEL=L,3,

M + L, if MODEL=2,4.
L: Number of terms in objective function.
N: Number of variables.

LNMAX : Row dimension of C and dimension of DRES. LNMAX must
be at least two and greater than
N + L, if MODEL=1,2,
N + 1, if MODEL=3,4.
LMNN2 :  Must be equal to
M + 2N + 4L + 2, if MODEL=1,
M + 2N + 3L + 2, if MODEL=2,
M + 2N + 2L + 4, if MODEL=3,
M+ 2N + L +4, if MODEL=4
when calling DFNLP.
LN : Must be set to
N + L, if MODEL=1,2,
N + 1, if MODEL=3,4.
X(LN) : Initially, the first N positions of X have to contain starting
values for the optimal solution. On return, X is replaced by
the current iterate. In the driving program the dimension of X
should be equal to LNMAX.
F(L) : On return, F contains the final objective function values by
which the function to be minimized is composed of.
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RES :
G(LMMAX) :

DRES(LMMAX) :

DG(LMMAX,LN) :

U(LMNN2) :

XL(LN),XU(LN) :

ACC :

ACCQP :

RESSIZE :

MAXFUN :

MAXIT :

MAX_NM :

TOLNM :

On return, RES contains the final objective function value.
On return, the first M coefficients of G contain the constraint
function values at the final iterate X. In the driving program,
the dimension of G should be equal to LMMAX.

On return, DRES contains the gradient of the transformed ob-
jective function subject to the final iterate X.

On return, DG contains the gradients of the active constraints
(ACTIVE(J)=.true.) at a current iterate X subject to the
transformed problem. The remaining rows are filled with pre-
viously computed gradients. In the driving program, the row
dimension of DG has to be equal to LMMAX.

On return, U contains the multipliers with respect to the iterate
stored in X. The first M coefficients contain the multipliers of
the M nonlinear constraints followed by the multipliers of the
lower and upper bounds. At an optimal solution, all multipliers
of inequality constraints should be nonnegative.

On input, the one-dimensional arrays XL and XU must contain
the upper and lower bounds of the variables. Only the first
N positions need to be defined, the bounds for the artificial
variables are set by DFNLP.

The user has to specify the desired final accuracy (e.g. 1.0D-7).
The termination accuracy should not be much smaller than the
accuracy by which gradients are computed.

The tolerance is needed for the QP solver to perform several
tests, for example whether optimality conditions are satisfied
or whether a number is considered as zero or not. If ACCQP
is less or equal to zero, then the machine precision is computed
by DFNLP20 and subsequently multiplied by 1.0D-+4.

Guess for the approximate size of the residuals of the least
squares problem at the optimal solution (MODEL=2), must
be positive.

The integer variable defines an upper bound for the number of
function calls during the line search (e.g. 20).

Maximum number of outer iterations, where one iteration cor-
responds to one formulation and solution of the quadratic pro-
gramming subproblem, or, alternatively, one evaluation of gra-
dients (e.g. 100).

Stack size for storing merit function values at previous itera-
tions for non-monotone line search (e.g. 10). If MAX_NM=0,
monotone line search is performed.

Relative bound for increase of merit function value, if line
search is not successful during the very first step (e.g. 0.1).
TOL_NM must not be negative.

17



IPRINT : Specification of the desired output level, passed to NLPQLP
together with the transformed problem:

0 - No output of the program.

1 - Only a final convergence analysis is given.

2 - One line of intermediate results is printed in each it-
eration.

3 - More detailed information is printed in each iteration

step, e.g., variable, constraint and multiplier values.
4 - In addition to 'IPRINT=3’, merit function and
steplength values are displayed during the line search.
MODE :  The parameter specifies the desired version of DENLP.

0 - Normal execution, function and gradient values passed
through subroutine calls.
2 - The user wants to perform reverse communication.

In this case, IFAIL must be set to 0 initially and
RES, G, DRES, DG contain the corresponding func-
tion and gradient values of the transformed problem.
If DEFNLP returns with IFAIL=-1, new function values
have to be computed subject to the variable X, stored
in RES and G, and DFNLP must be called again. If
DFNLP returns with IFAIL=-2, new gradient values
have to be computed, stored in DRES and DG, and
DFNLP must be called again. Only gradients of active
constraints (ACTIVE(J)=.TRUE.) need to be recom-

puted
10UT : Integer indicating the desired output unit number, i.e., all
write-statements start with "WRITE(IOUT,... ".
TFAIL : The parameter shows the reason for terminating a solution pro-

cess. Initially IFAIL must be set to zero. On return IFAIL could
contain the following values:

-2 - In case of MODE=2, compute gradient values,
store them in DRES and DG, and call DFNLP
again.

-1 - In case of MODE=2, compute objective function

and all constraint values, store them in RES and
G, and call DFNLP again.
- The optimality conditions are satisfied.
- The algorithm stopped after MAXIT iterations.
The algorithm computed an uphill search direction.
- Underflow occurred when determining a new ap-
proximation matrix for the Hessian of the La-
grangian.
4 - The line search could not be terminated success-
fully.
5 - Length of a working array is too short. More
detailed error information is obtained with
TPRINT>0.

W N = O
1
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6 - There are false dimensions, for example
M>MMAX, N>NMAX, or MNN2#M+N-+N+2.

7 - Thesearch direction is close to zero, but the current
iterate is still infeasible.
8 - The starting point violates a lower or upper bound.

9 - Wrong input parameter, i.e., MODE, LDL de-
composition in D and C (in case of MODE=1),
IPRINT, IOUT, ...
>100 - The solution of the quadratic programming sub-
problem has been terminated with an error message
IFQL and IFAIL is set to IFQL+100.
WA(LWA) : WA is a real working array of length LWA.
LWA Length of the real working array WA. LWA must be at least
T*LNMAX*LNMAX/2+34*LNMAX+9*LMMA X+200.
The working array length was computed under the assump-
tion, that LNMAX=L+N-+1, LMMAX=L+M-+1, and that the
quadratic programming subproblem is solved by subroutine QL
or LSQL, respectively, see Schittkowski [34].
KWA(LKWA) : KWA is an integer working array of length LKWA.
LKWA : Length of the integer working array KWA. LKWA should be
at least LN+15.
ACTIVE(LACTIV) : The logical array indicates constraints, which DENLP considers
to be active at the last computed iterate, i.e., G(J,X) is active,
if and only if ACTIVE(J)=.TRUE., J=1,...,M.

LACTIV : Length of the logical array ACTIVE. The length LACTIV of
the logical array should be at least 2*(M+L+L)+10.
QPSOLVE : External subroutine to solve the quadratic programming sub-

problem. The calling sequence is
CALL QPSOLVE(M,ME,MMAX ,N,NMAX ,MNN,C,D,A,B,

/ XL,XU,X,U,EPS,MODE,IOUT IFAIL,IPRINT,

/ WAR,LWAR,IWAR,LIWAR)
For more details about the choice and dimensions of arguments,
see [33].

All declarations of real numbers must be done in double precision. In case of
normal execution (MODE=0), a user has to provide the following two subroutines
for function and gradient evaluations.

SUBROUTINE DFFUNC(J,N,F,X)

Definition of the parameters:

J: Index of function to be evaluated.
N: Number of variables and dimension of X.
F: If J>0, the J-th term of the objective function is to computed,

if J<O0, the -J-th constraint function value and stored in F.
X(N) : When calling DFFUNC, X contains the actual iterate.
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SUBROUTINE DFGRAD(J,N,DF ,X)

Definition of the parameters:

J: Index of function for which the gradient is to be evaluated.
N: Number of variables and dimension of DF and X, respectively.
DF : If J>0, the gradient of the J-th term of the objective function

is to computed, if J<0, the gradient of the -J-th constraint
function value. In both cases, the gradient is to be stored in
DF.

X(N) :  When calling DFGRAD, X contains the actual iterate.

In case of MODE=2, one has to declare dummy subroutines with the names DF-
FUNC and DFGRAD. Subroutine DFNLP is to be linked with the user-provided
main program, the two subroutines DFFUNC and DFGRAD, the new SQP code
NLPQLP, see Schittkowski [34], and the quadratic programming code QL, see Schitt-
kowski [34]. In case of least squares optimization and a larger number of terms in
the objective function, the code QL should be replaced by the code LSQL which
takes advantage of the special structure of the subproblem.

Some of the termination reasons depend on the accuracy used for approximat-
ing gradients. If we assume that all functions and gradients are computed within
machine precision and that the implementation is correct, there remain only the
following possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm
plays around with round-off errors without being able to improve the solution.
Especially the Hessian approximation of the Lagrangian function becomes un-
stable in this case. A straightforward remedy is to restart the optimization
cycle again with a larger stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty.
There is no way to find out, whether a general nonlinear and non-convex set
possesses a feasible point or not. Thus, the nonlinear programming algorithms
will proceed until running in any of the mentioned error situations. In this
case, there the correctness of the model must be checked very carefully.

3. Constraints are feasible, but some of them there are degenerate, for example
if some of the constraints are redundant. One should know that SQP algo-
rithms require satisfaction of the so-called constraint qualification, i.e., that
gradients of active constraints are linearly independent at each iterate and in
a neighborhood of the optimal solution. In this situation, it is recommended
to check the formulation of the model.

However some of the error situations do also occur, if because of wrong or non-
accurate gradients, the quadratic programming subproblem does not yield a descent
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direction for the underlying merit function. In this case, one should try to improve
the accuracy of function evaluations, scale the model functions in a proper way, or
start the algorithm from other initial values.

Example 7.1 To give a simple example how to organize the code in case of two
explicitly given functions, we consider again Rosenbrock’s banana function, see Fx-
ample 3.1 or test problem TP1 of Hock and Schittkowski [15]. The problem is

min 100(zy — 2%)% + (1 — x1)?
21,19 € R: —1000 < 2, < 1000 (29)
—1000 < 29 < 1000

The Fortran source code for executing NLPQLP is listed below. Gradients are com-
puted analytically, but a piece of code is is shown in form of comments for ap-
proximating them by forward differences. In case of activating numerical gradient
evaluation, some tolerances should be adapted, i.e., ACC=1.0D-8 and RESSIZ =
1.0D-8.

IMPLICIT NONE

INTEGER NMAX, MMAX, LMAX, LMMAX, LNMAX, LMNNX2, LWA,
/ LKWA, LACTIV
PARAMETER (NMAX = 2, MMAX = 0, LMAX = 2)
PARAMETER (LMMAX = MMAX + 2*LMAX,
/ LNMAX = NMAX + LMAX + 1,
/ LMNNX2 = MMAX + 2%NMAX + 4*LMAX + 4,
/ LWA = 7*LNMAX*LNMAX/2 + 34*LNMAX + O9*LMMAX
/ + 200,
/ LKWA = LNMAX + 15,
/ LACTIV = 2+LMMAX + 10)
INTEGER M, ME, N, L, LMNN2, MAXFUN, MAXIT, MAX_NM,
/ IPRINT, MODE, IOUT, IFAIL, KWA, I, MODEL, LN
DOUBLE PRECISION X, F, RES, G, DRES, DG, U, XL, XU, ACC, ACCQP,
/ RESSIZ, TOL_NM, WA
DIMENSION X(LNMAX), F(LMAX), G(LMMAX), DRES(LNMAX),
/ DG (LMMAX,LNMAX), U(LMNNX2), XL(LNMAX),
/ XU(LNMAX), WA(LWA), KWA(LKWA), ACTIVE(LACTIV)
LOGICAL ACTIVE
EXTERNAL LSQL, QL, DFFUNC, DFGRAD
¢
C  SET SOME CONSTANTS
C
M =0
ME =0
N =2
L =2
ACC = 1.0D-12
ACCQP = 1.0D-14
RESSIZ = 1.0DO
TOL_NM = 0.0
MAXFUN = 10
MAXIT = 100
MAX_NM = 0
IPRINT = 2
I0UT =6
IFAIL =0
C

C  EXECUTE DFNLP
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Q

Q

Q

Q

MODE =0

DO

NN NN

NN NN

END!

END O

STO.
END

COMPU

SUB

IMP

INT

DOU.

EVALU.

IF

ELS

END

END O

RET
END

MODEL=1,4
WRITE (IOUT,*) ’#%* MODEL =’,MODEL
IF (MODEL.EQ.1) THEN
LN =N + L
LMNN2 = M + 2*N + 4%L + 2
ENDIF
IF (MODEL.EQ.2) THEN
LN = N + L
LMNN2 = M + 2#N + 3*L + 2
ENDIF
IF (MODEL.EQ.3) THEN
LN = N + 1
LMNN2 = M + 2+N + 2%L + 4
ENDIF
IF (MODEL.EQ.4) THEN
LN = N + 1
LMNN2 = M + 2*N + L + 4
ENDIF
X(1) = -1.2D0
X(2) = 1.0D0
DO I = 1,N
XL(I) = -1000.0D0O
XU(I) = 1000.0DO
ENDDO
IF (MODEL.EQ.2) THEN
CALL DFNLP(MODEL, M, ME, LMMAX, L, N, LNMAX, LMNN2, LN, X,
F, RES, G, DRES, DG, U, XL, XU, ACC, ACCQP,
RESSIZ, MAXFUN, MAXIT, MAX_NM, TOL_NM, IPRINT,
MODE, IOUT, IFAIL, WA, LWA, KWA, LKWA, ACTIVE,
LACTIV, LSQL)
ELSE
CALL DFNLP(MODEL, M, ME, LMMAX, L, N, LNMAX, LMNN2, LN, X,
F, RES, G, DRES, DG, U, XL, XU, ACC, ACCQP,
RESSIZ, MAXFUN, MAXIT, MAX_NM, TOL_NM, IPRINT,
MODE, IOUT, IFAIL, WA, LWA, KWA, LKWA, ACTIVE,

LACTIV, QL)
ENDIF
DO
F MAIN PROGRAM
)3
TE FUNCTION VALUES
ROUTINE DFFUNC(J, N, F, X)
LICIT NONE
EGER J, N

BLE PRECISION F, X(N)
ATION OF PROBLEM FUNCTIONS
(J.EQ.1) THEN

F = 10.0D0*(X(2) - X(1)*x2)
E

F = 1.0D0 - X(1)

IF

F DFFUNC

URN
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C  EVALUATION OF GRADIENTS
c
SUBROUTINE DFGRAD(J, N, DF, X)
IMPLICIT NONE
INTEGER J, N, I
DOUBLE PRECISION DF(N), X(N), EPS, FI, FEPS
c
C  ANALYTICAL DERIVATIVES
c
IF (J.EQ.1) THEN
DF(1) = -2.0D1%X(1)
DF(2) = 10.0DO
ELSE
DF(1) = -1.0D0
DF(2) = 0.0D0
ENDIF
c
C END OF DFGRAD
c
RETURN
END

The following output should appear on screen, mainly generated by NLPQLP:

START OF DATA FITTING ALGORITHM

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

PARAMETERS:
MODE = 1
ACC = 0.1000D-13
SCBOU = 0.1000D+31
MAXFUN = 10
MAXIT = 100
IPRINT = 2
OUTPUT IN THE FOLLOWING ORDER:
IT - ITERATION NUMBER
F - OBJECTIVE FUNCTION VALUE
SCV - SUM OF CONSTRAINT VIOLATION
NA - NUMBER OF ACTIVE CONSTRAINTS
I - NUMBER OF LINE SEARCH ITERATIONS

ALPHA - STEPLENGTH PARAMETER
DELTA - ADDITIONAL VARIABLE TO PREVENT INCONSISTENCY
KT - KUHN-TUCKER OPTIMALITY CRITERION

IT F SCV NA I ALPHA DELTA KT

.00D+00 0.00D+00 0.24D+02
.10D+01 0.00D+00 0.35D-12
.10D+01 0.00D+00 0.49D-25

1 0.12100005D+02 0.00D+00 2
2 0.10311398D-26 0.48D+02 2
3 0.24527658D-25 0.36D-14 2

e}
o O O

* FINAL CONVERGENCE ANALYSIS

OBJECTIVE FUNCTION VALUE: F(X) = 0.24527658D-25

APPROXIMATION OF SOLUTION: X =
0.10000000D+01  0.10000000D+01 -0.49737992D-13 0.21582736D-12

APPROXIMATION OF MULTIPLIERS: U =
0.47331654D-27 -0.11410084D-25 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00 0.00000000D+00 ©0.00000000D+00
0.00000000D+00 0.00000000D+00
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CONSTRAINT VALUES: G(X) =

-0.35527137D-14 -0.10955700D-25
DISTANCE FROM LOWER BOUND: XL-X =

-0.10010000D+04 -0.10010000D+04 -0.10000000D+31 -0.10000000D+31
DISTANCE FROM UPPER BOUND: XU-X =

0.99900000D+03  0.99900000D+03 0.10000000D+31 0.10000000D+31

NUMBER OF FUNC-CALLS: NFUNC = 3
NUMBER OF GRAD-CALLS: NGRAD = 3
NUMBER OF QL-CALLS: NQL = 3

* FINAL CONVERGENCE ANALYSIS OF DFNLP
RESIDUAL: RES(X) = 0.49421347D-25
OBSERVATION FUNCTION VALUES: F(X)

-0.53290705D-13 0.21582736D-12
APPROXIMATION OF SOLUTION: X =

0.10000000D+01  0.10000000D+01
APPROXIMATION OF MULTIPLIERS: U =

0.00000000D+00 0.00000000D+00
NUMBER OF DFFUNC-CALLS: NFUNC =
NUMBER OF DFGRAD-CALLS: NGRAD
NUMBER OF QL-CALLS: NQL =

.00000000D+00 0.00000000D+00

W wd O

Example 7.2 To present a data fitting example and also reverse communication,
we consider again Example 5.1. The model function is given by

h( t) Il(t2 + l‘gt)
X BN —
’ t2 + ZE3t + Ty

= (x1,...,24)", and the data are shown in the code below. In addition, we have
two equality constraints

h(%tl) -y =0, h(xatll) —yn =20 .

Some results are found in Table 3 for different norms. In this case, we use only the
least squares formulation in reverse communication. The code and the corresponding
screen output follow.

IMPLICIT NONE

INTEGER NMAX, MMAX, LMAX, LMMAX, LNMAX, LMNN2X, LWA,
/ LKWA, LACTIV

PARAMETER (NMAX = 4, MMAX = 2, LMAX = 11)

PARAMETER (LMMAX = MMAX + 2*LMAX,
/ LNMAX = NMAX + 2+LMAX + 1,
/ LMNN2X = MMAX + 2xNMAX + 3+LMAX + 2,
/ LWA = 7xLNMAX*LNMAX/2 + 34*LNMAX + 9*LMMAX
/ + 200,
/ LKWA = LNMAX + 15,
/ LACTIV = 2+LMMAX + 10)

INTEGER M, ME, N, L, LMNN2, MAXFUN, MAXIT, IPRINT, MODE,
/ MAX_NM, IOUT, IFAIL, KWA, I, MODEL, LN, J
DOUBLE PRECISION X, F, RES, G, DRES, DG, U, XL, XU, ACC, ACCQP,
/ RESSIZ, TOL_NM, WA, EPS, T, Y, W

DIMENSION X(LNMAX), F(LMAX), G(LMMAX), DRES(LNMAX),
/ DG (LMMAX,LNMAX), U(LMNN2X), XL(LNMAX),
/ XU(LNMAX), WA(LWA), KWA(LKWA), ACTIVE(LACTIV),
/ T(LMAX),Y(LMAX), W(NMAX)

LOGICAL ACTIVE

EXTERNAL LsSQL

DATA T/0.0625D0,0.0714D0,0.0823D0,0.1000D0,0.1250D0,
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/
/
DATA

0.1670D0,0.2500D0,0.5000D0,1.0000D0,2.0000D0,

4.0000D0/
Y/0.0246D0,0.0235D0,0.0323D0,0.0342D0,0.0456D0,

0.0627D0,0.0844D0,0.1600D0,0.1735D0,0.1947D0,

C
C
C

C

C
C
C

/
/ 0.1957D0/

SET SOME CONSTANTS

MODEL = 2
M =2
ME =2
N =4
L =11
LMNN2 = M + 2xN + 3%L + 2
LN =N+ L
ACC = 1.0D-14
ACCQP = 1.0D-14
RESSIZ = 1.0D-4
TOL_NM = 0.0
MAXFUN = 20
MAXIT = 100
MAX_NM = 0
IPRINT = 2
MODE =2
I0UT =6
IFAIL =0
DO J = 1,L
DO I=1,LN
DG(J,I) = 0.0
ENDDO
DG(J,N+J) = -1.0DO
ENDDO
DO J = L+1,L+M
DO I=1,LN
DG(J,I) = 0.0DO
ENDDO
ENDDO
DO I=1,LN
DRES(I) = 0.0DO
ENDDO

STARTING VALUES AND BOUNDS

X(1) = 0.25D0
X(2) = 0.39D0
X(3) = 0.415D0
X(4) = 0.39D0
DOI=1,N

XL(I) = 0.0DO

XU(I) = 1.0D5
ENDDO

EXECUTE DFNLP IN REVERSE COMMUNICATION

1 IF ((IFAIL.EQ.O).OR.(IFAIL.EQ.-1)) THEN
RES = 0.0D0
Do J=1,L
CALL H(T(J), Y(J), N, X, G(J))
G(J) = G(J) - X(N+J)
RES = RES + X(N+J)*x2
ENDDO
RES = 0.5DO*RES
CALL H(T(1), Y(1), N, X, G(L+1))
CALL H(T(L), Y(L), N, X, G(L+2))
ENDIF
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Q

Q

Q

Q

Q

2 IF ((IFA

IL.EQ.O0).OR. (IFAIL.EQ.-2)) THEN

D0 J = 1,L
CALL DH(T(J), N ,X, W)
DO I=1,N
DG(J,I) = W(I)
ENDDO
ENDDO
CALL DH(T(1), N, X, W)
DO I=1,N
DG(L+1,I) = W(I)
ENDDO
CALL DH(T(L), N, X, W)
DO I=1,N
DG(L+2,I) = W(I)
ENDDO
DO I=1,L
DRES(N+I) = X(N+I)
ENDDO
ENDIF
CALL DFNLP
CALL DFNLP(MODEL, M, ME, LMMAX, L, N, LNMAX, LMNN2, LN, X, F,
/ RES, G, DRES, DG, U, XL, XU, ACC, ACCQP, RESSIZ,
/ MAXFUN, MAXIT, MAX_NM, TOL_NM, IPRINT, MODE, IOUT,
/ IFAIL, WA, LWA, KWA, LKWA, ACTIVE, LACTIV, LSQL)
IF (IFAIL.EQ.-1) GOTO 1
IF (IFAIL.EQ.-2) GOTO 2
END OF MAIN PROGRAM
STOP
END
DATA FITTING FUNCTION
SUBROUTINE H(T, Y, N ,X, F)
IMPLICIT NONE
INTEGER N
DOUBLE PRECISION T, Y, X(N), F
F = X(D*T*(T + X(2))/(T**2 + X(3)*T + X(4)) - Y
RETURN
END
MODEL DERIVATIVES
SUBROUTINE DH(T, N ,X, DF)
IMPLICIT NONE
INTEGER N
DOUBLE PRECISION T, X(N), DF(N)
DF(1) = T*(T + X(2))/(T**2 + X(3)*T + X(4))
DF(2) = X(1)*T/(T**2 + X(3)*T + X(4))
DF(3) = -X(1)*T**2% (T + X(2))/(T**2 + X(3)*T + X(4))*x2
DF(4) = -X(1)*T*(T + X(2))/(T*x2 + X(3)*T + X(4))**2
RETURN
END
DUMMY FOR FUNCTIONS
SUBROUTINE DFFUNC(J, N, F, X)
INTEGER J, N
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C

DIMENSION X
DOUBLE PRECISION F, X
RETURN

END

DUMMY FOR GRADIENTS

SUBROUTINE DFGRAD(J, N, DF, X)

INTEGER J, N
DIMENSION X(N), DF(N)
DOUBLE PRECISION DF, X
RETURN

END

START OF DATA FITTING ALGORITHM

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
PARAMETERS :

MODE = 3

ACC = 0.1000D-13

SCBOU =  0.1000D+31

MAXFUN = 20

MAXIT = 100

IPRINT = 2

OUTPUT IN THE FOLLOWING ORDER:

IT ITERATION NUMBER

F - OBJECTIVE FUNCTION VALUE

SCV - SUM OF CONSTRAINT VIOLATION

NA - NUMBER OF ACTIVE CONSTRAINTS

I - NUMBER OF LINE SEARCH ITERATIONS

ALPHA - STEPLENGTH PARAMETER

DELTA - ADDITIONAL VARIABLE TO PREVENT INCONSISTENCY

KT - KUHN-TUCKER OPTIMALITY CRITERION

IT F SCV NA I ALPHA DELTA KT
1 0.00000000D+00 0.25D+00 13 O 0.00D+00 0.00D+00 0.11D-02
2 0.11432789D-04 0.18D+00 13 2 0.24D+00 0.00D+00 0.80D-03
3 0.20506917D-03 0.38D-01 13 1 0.10D+01 0.00D+00 0.21D-03
4 0.20655267D-03 0.38D-02 13 1 0.10D+01 0.00D+00 0.24D-04
5 0.20640309D-03 0.41D-03 13 1 0.10D+01 0.00D+00 0.25D-05
6 0.20649153D-03 0.66D-05 13 1 0.10D+01 0.00D+00 0.68D-07
7 0.20648541D-03 0.36D-06 13 1 0.10D+01 0.00D+00 0.29D-08
8 0.20648563D-03 0.18D-08 13 1 0.10D+01 0.00D+00 0.15D-10
9 0.20648563D-03 0.51D-12 13 1 0.10D+01 0.00D+00 0.40D-14
* FINAL CONVERGENCE ANALYSIS
OBJECTIVE FUNCTION VALUE: F(X) = 0.20648563D-03
APPROXIMATION OF SOLUTION: X =
0.19226326D+00 0.40401704D+00 0.27497963D+00 0.20678885D+00
0.26469780D-22 0.46890280D-02 0.27982006D-03 0.54681082D-02

0.39112756D-02 0.26393784D-02 O.

0.86748112D-02 -0.36381094D-03 -0.
APPROXIMATION OF MULTIPLIERS: U =

0.58596786D-25 -0.46890280D-02 -0.
.39112757D-02 -0.26393786D-02 -0.
.86748116D-02 0.36381082D-03 0.
.18673627D-02 .00000000D+00 0.
.00000000D+00 .00000000D+00 0.
.00000000D+00 .00000000D+00 0.
.00000000D+00 .00000000D+00 0.

O O O O

85962235D-02
82718061D-23

27982009D-03
85962239D-02
92167175D-24
00000000D+00
00000000D+00
00000000D+00
00000000D+00

27

.13764506D-01

.54681083D-02
.13764505D-01
.26628360D-01
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00



0.00000000D+00 0.00000000D+00 0.00000000D+00 ©0.00000000D+00
0.00000000D+00 0.00000000D+00 0.00000000D+00 ©0.00000000D+00
0.00000000D+00 0.00000000D+00 ©0.00000000D+00 ©0.00000000D+00
0.00000000D+00  0.00000000D+00  0.00000000D+00

CONSTRAINT VALUES: G(X) =
-0.32474023D-13 -0.27497102D-13 -0.19635606D-13 -0.39846598D-14
0.20796732D-13 0.59481066D-13 0.96716038D-13 0.50237592D-14
-0.93324654D-13 -0.63523459D-13 -0.27755576D-13 -0.32474023D-13
-0.27755576D-13

DISTANCE FROM LOWER BOUND: XL-X =
-0.19226326D+00 -0.40401704D+00 -0.27497963D+00 -0.20678885D+00
-0.10000000D+31 -0.10000000D+31 -0.10000000D+31 -0.10000000D+31
-0.10000000D+31 -0.10000000D+31 -0.10000000D+31 -0.10000000D+31
-0.10000000D+31 -0.10000000D+31 -0.10000000D+31

DISTANCE FROM UPPER BOUND: XU-X =
0.98077367D+01 0.95959830D+01 0.97250204D+01 0.97932111D+01
0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31
0.10000000D+31  0.10000000D+31 0.10000000D+31 0.10000000D+31
0.10000000D+31 0.10000000D+31 0.10000000D+31

NUMBER OF FUNC-CALLS: NFUNC = 10

NUMBER OF GRAD-CALLS: NGRAD = 9

NUMBER OF QL-CALLS: NQL = 9

* FINAL CONVERGENCE ANALYSIS OF DFNLP

RESIDUAL: RES(X) = 0.41297127D-03

OBSERVATION FUNCTION VALUES: F(X) =
-0.32474023D-13 0.46890280D-02 0.27982006D-03 0.54681082D-02
0.39112756D-02 0.26393784D-02 0.85962235D-02 -0.13764506D-01
0.86748112D-02 -0.36381094D-03 -0.27755576D-13

APPROXIMATION OF SOLUTION: X =
0.19226326D+00 0.40401704D+00 0.27497963D+00 0.20678885D+00

APPROXIMATION OF MULTIPLIERS: U =
0.26628360D-01 0.18673627D-02 0.00000000D+00 0.00000000D+00
0.00000000D+00  0.00000000D+00  0.00000000D+00 0.00000000D+00
0.00000000D+00  0.00000000D+00

CONSTRAINT VALUES: G(X) =
-0.32474023D-13 -0.27755576D-13

NUMBER OF DFFUNC-CALLS: NFUNC = 10

NUMBER OF DFGRAD-CALLS: NGRAD = 9

NUMBER OF QL-CALLS: NQL = 9

8 Summary

We presented a modification of a Gauss-Newton method with the goal to apply an
available black-box SQP solver and to retain the excellent convergence properties of
Gauss-Newton-type algorithms. The idea is to introduce additional variables and
nonlinear equality constraints and to solve the transformed problem by an SQP
method. In a very similar way, also L, L., and min-max problems can be solved
efficiently by an SQP code after a suitable transformation. The method is outlined,
some comparative performance results are obtained, and the usage of the code is
documented.
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